Finite volume difference scheme for a stiff elliptic reaction-diffusion problem with a line interface

被引:0
|
作者
Braianov, IA [1 ]
机构
[1] Univ Rousse, Ctr Appl Math & Informat, Rousse 7017, Bulgaria
来源
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider a singularly perturbed elliptic problem in two dimensions with stiff discontinuous coefficients of order O(1) and O(epsilon) on the left and on the right of interface, respectively. The solution of this problem exhibits boundary and corner layers and is difficult to solve numerically. The FVM is implemented on condensed (Shishkin's) mesh that resolves boundary and corners layers, and we prove that it yelds an accurate approximation of the solution both inside and outside these layers. We give error estimates in discrete energetic norm that hold true uniformly in the perturbation parameter epsilon. Numerical experiments confirm these theoretical results.
引用
收藏
页码:117 / 124
页数:8
相关论文
共 50 条
  • [31] A jump condition capturing finite difference scheme for elliptic interface problems
    Wang, WC
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (05): : 1479 - 1496
  • [32] A RADIAL BASIS FUNCTION (RBF) COMPACT FINITE DIFFERENCE (FD) SCHEME FOR REACTION-DIFFUSION EQUATIONS ON SURFACES
    Lehto, Erik
    Shankar, Varun
    Wright, Grady B.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (05): : A2129 - A2151
  • [33] ADER finite volume schemes for nonlinear reaction-diffusion equations
    Toro, Eleuterio F.
    Hidalgo, Arturo
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (01) : 73 - 100
  • [34] Numerical methods for stiff reaction-diffusion systems
    Chou, Ching-Shan
    Zhang, Yong-Tao
    Zhao, Rui
    Nie, Qing
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2007, 7 (03): : 515 - 525
  • [35] A HYBRID METHOD FOR STIFF REACTION-DIFFUSION EQUATIONS
    Qiu, Yuchi
    Chen, Weitao
    Nie, Qing
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (12): : 6387 - 6417
  • [36] A POSTERIORI ERROR ESTIMATES FOR A FINITE VOLUME SCHEME APPLIED TO A NONLINEAR REACTION-DIFFUSION EQUATION IN POPULATION DYNAMICS
    El Harrak, Anouar
    Tayeq, Hatim
    Bergam, Amal
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (07): : 2183 - 2197
  • [37] A parameter uniform numerical method for a nonlinear elliptic reaction-diffusion problem
    Boglaev, Igor
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 350 : 178 - 194
  • [38] Difference scheme for singularly perturbed reaction-diffusion problems with concentrated capacity
    Braianov, IA
    Vulkov, LG
    FINITE DIFFERENCE METHODS: THEORY AND APPLICATIONS, 1999, : 23 - 31
  • [39] On a uniformly accurate finite difference approximation of a singularly perturbed reaction-diffusion problem using grid equidistribution
    Beckett, G
    Mackenzie, JA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 131 (1-2) : 381 - 405
  • [40] Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction-diffusion problem
    Liu, Yang
    Du, Yanwei
    Li, Hong
    He, Siriguleng
    Gao, Wei
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (04) : 573 - 591