Eigenvalues of the laplacian acting on p-forms and metric conformal deformations

被引:10
|
作者
Colbois, B
El Soufi, A
机构
[1] Univ Neuchatel, Math Lab, CH-2007 Neuchatel, Switzerland
[2] Univ Tours, Lab Math & Phys Theor, UMR 6083, CNRS, F-37200 Tours, France
关键词
Laplacian; p-forms; eigenvalue; conformal deformations;
D O I
10.1090/S0002-9939-05-08005-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M, g) be a compact connected orientable Riemannian manifold of dimension n >= 4 and let lambda(k,p)(g) be the k-th positive eigenvalue of the Laplacian. Delta g,p = dd* + d* d acting on differential forms of degree p on M. We prove that the metric g can be conformally deformed to a metric g', having the same volume as g, with arbitrarily large lambda 1, p(g') for all p is an element of [2,n-2]. Note that for the other values of p, that is p = 0, 1, n-1 and n, one can deduce from the literature that, for all k > 0, the k-th eigenvalue lambda(k,p) is uniformly bounded on any conformal class of metrics of fixed volume on M. For p = 1, we show that, for any positive integer N, there exists a metric g(N) conformal to g such that, for all k <= N, lambda(k), (1)(g(N)) = lambda(k),(0)(g(N)), that is, the first N eigenforms of Delta g(N), 1 are all exact forms.
引用
收藏
页码:715 / 721
页数:7
相关论文
共 50 条
  • [31] Extremal Eigenvalues of the Laplacian in a Conformal Class of Metrics: The `Conformal Spectrum'
    Bruno Colbois
    Ahmad El Soufi
    Annals of Global Analysis and Geometry, 2003, 24 : 337 - 349
  • [32] On the splitting of quasilinear p-forms
    Scully, Stephen
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 713 : 49 - 83
  • [33] On the number of negative eigenvalues of the Laplacian on a metric graph
    Behrndt, Jussi
    Luger, Annemarie
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (47)
  • [34] Anisotropic inflation with coupled p-forms
    Beltran Almeida, Juan P.
    Guarnizo, Alejandro
    Kase, Ryotaro
    Tsujikawa, Shinji
    Valenzuela-Toledo, Cesar A.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2019, (03):
  • [35] Flat manifolds isospectral on p-forms
    R. J. Miatello
    J. P. Rossetti
    The Journal of Geometric Analysis, 2001, 11 (4): : 649 - 667
  • [36] The spectrum on p-forms of a lens space
    Lauret, Emilio A.
    GEOMETRIAE DEDICATA, 2018, 197 (01) : 107 - 122
  • [37] On covariant actions for chiral p-forms
    Mkrtchyan, Karapet
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (12)
  • [38] Domain deformations and eigenvalues of the Dirichlet Laplacian in a Riemannian manifold
    El Soufi, Ahmad
    Ilias, Said
    ILLINOIS JOURNAL OF MATHEMATICS, 2007, 51 (02) : 645 - 666
  • [39] P-FORMS FROM THE ISLE OF MULL
    GRAY, JM
    SCOTTISH JOURNAL OF GEOLOGY, 1981, 17 : 39 - +
  • [40] The spectrum on p-forms of a lens space
    Emilio A. Lauret
    Geometriae Dedicata, 2018, 197 : 107 - 122