ON THE SPECTRAL DECOMPOSITION OF AFFINE HECKE ALGEBRAS

被引:55
|
作者
Opdam, Eric M. [1 ]
机构
[1] Univ Amsterdam, Korteweg De Vries Inst Math, NL-1018 TV Amsterdam, Netherlands
关键词
affine Hecke algebra; tempered representation; Plancherel measure; formal dimension; intertwining operator; residue calculus;
D O I
10.1017/S1474748004000155
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An affine Hecke algebra H contains a large abelian subalgebra A spanned by the Bernstein-Zelevinski-Lusztig basis elements theta(x), where x runs over (an extension of) the root lattice. The centre Z of H is the subalgebra of Weyl group invariant elements in A. The natural trace ('evaluation at the identity') of the affine Hecke algebra can be written as integral of a certain rational n-form (with values in the linear dual of H) over a cycle in the algebraic torus T = Spec(A). This cycle is homologous to a union of 'local cycles'. We show that this gives rise to a decomposition of the trace as an integral of positive local traces against an explicit probability measure on the spectrum W0 \ T of Z. From this result we derive the Plancherel formula of the affine Hecke algebra.
引用
收藏
页码:531 / 643
页数:113
相关论文
共 50 条
  • [31] Involutions of double affine Hecke algebras
    Ion, B
    COMPOSITIO MATHEMATICA, 2003, 139 (01) : 67 - 84
  • [32] CYCLOTOMIC DOUBLE AFFINE HECKE ALGEBRAS
    Braverman, Alexander
    Etingof, Pavel
    Finkelberg, Michael
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2020, 53 (05): : 1249 - 1312
  • [33] Representations of the elliptic affine Hecke algebras
    Zhao, Gufang
    Zhong, Changlong
    ADVANCES IN MATHEMATICS, 2022, 395
  • [34] Affine cellularity of affine Hecke algebras of rank two
    Jérémie Guilhot
    Vanessa Miemietz
    Mathematische Zeitschrift, 2012, 271 : 373 - 397
  • [35] Elliptic Double Affine Hecke Algebras
    Rains, Eric M.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
  • [36] Affine Hecke Algebras via DAHA
    Cherednik I.
    Arnold Mathematical Journal, 2018, 4 (1) : 69 - 85
  • [37] Affine hecke algebras and the Schubert calculus
    Griffeth, S
    Ram, A
    EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (08) : 1263 - 1283
  • [38] HEISENBERG ALGEBRAS AND RATIONAL DOUBLE AFFINE HECKE ALGEBRAS
    Shan, P.
    Vasserot, E.
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 25 (04) : 959 - 1031
  • [39] Hecke-Clifford Algebras and Spin Hecke Algebras I: The Classical Affine Type
    T A Khongsap
    Weiqiang Wang
    Transformation Groups, 2008, 13 : 389 - 412
  • [40] Hecke-Clifford algebras and spin Hecke algebras I: The classical affine type
    Khongsap, Ta
    Wang, Weiqiang
    TRANSFORMATION GROUPS, 2008, 13 (02) : 389 - 412