The Kripke schema in metric topology

被引:3
|
作者
Lubarsky, Robert [2 ]
Richman, Fred [2 ]
Schuster, Peter [1 ]
机构
[1] Univ Leeds, Leeds LS2 9JT, W Yorkshire, England
[2] Florida Atlantic Univ, Dept Math Sci, Boca Raton, FL 33431 USA
关键词
Constructive reverse mathematics; Countable; Kripke schema; Metric space; Separable;
D O I
10.1002/malq.201200018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A form of Kripke's schema turns out to be equivalent to each of the following two statements from metric topology: every open subspace of a separable metric space is separable; every open subset of a separable metric space is a countable union of open balls. Thus Kripke's schema serves as a point of reference for classifying theorems of classical mathematics within Bishop-style constructive reverse mathematics. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:498 / 501
页数:4
相关论文
共 50 条
  • [41] COMPACT IMAGES OF SPACES WITH A WEAKER METRIC TOPOLOGY
    Yan, Peng-fei
    Lue, Cheng
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (04) : 921 - 926
  • [42] GENERALIZED METRIC PROPERTIES ON HYPERSPACES WITH THE VIETORIS TOPOLOGY
    Lin, Fucai
    Shen, Rongxin
    Liu, Chuan
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 51 (05) : 1761 - 1779
  • [43] MEASURE INDUCED METRIC TOPOLOGY FOR A BANACH ALGEBRA
    COHEN, S
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (02): : A307 - A307
  • [44] Conjugate topology of pointwise metric molecular lattices
    Xiao, Jian-zhong
    Zhu, Xing-hua
    FUZZY SETS AND SYSTEMS, 2009, 160 (09) : 1256 - 1266
  • [46] Compact images of spaces with a weaker metric topology
    Peng-fei Yan
    Cheng Lü
    Czechoslovak Mathematical Journal, 2008, 58 : 921 - 926
  • [47] Fuzzifying topology induced by a strong fuzzy metric
    Minana, Juan-Jose
    Sostak, Alexander
    FUZZY SETS AND SYSTEMS, 2016, 300 : 24 - 39
  • [48] FROM GEOMETRY TO TOPOLOGY: PHILOSOPHY OF METRIC SPACE
    Borges de Meneses, Ramiro Delio
    ENDOXA-SERIES FILOSOFICAS, 2010, (25): : 185 - 234
  • [49] Some notes on topology of partially metric spaces
    Asadi, Mehdi
    FILOMAT, 2024, 38 (05) : 1745 - 1750
  • [50] QUANTUM NORM THEORY AND THE QUANTIZATION OF METRIC TOPOLOGY
    ISHAM, CJ
    KUBYSHIN, Y
    RENTELN, P
    CLASSICAL AND QUANTUM GRAVITY, 1990, 7 (06) : 1053 - 1074