The Kripke schema in metric topology

被引:3
|
作者
Lubarsky, Robert [2 ]
Richman, Fred [2 ]
Schuster, Peter [1 ]
机构
[1] Univ Leeds, Leeds LS2 9JT, W Yorkshire, England
[2] Florida Atlantic Univ, Dept Math Sci, Boca Raton, FL 33431 USA
关键词
Constructive reverse mathematics; Countable; Kripke schema; Metric space; Separable;
D O I
10.1002/malq.201200018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A form of Kripke's schema turns out to be equivalent to each of the following two statements from metric topology: every open subspace of a separable metric space is separable; every open subset of a separable metric space is a countable union of open balls. Thus Kripke's schema serves as a point of reference for classifying theorems of classical mathematics within Bishop-style constructive reverse mathematics. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:498 / 501
页数:4
相关论文
共 50 条
  • [1] About Kripke's schema and countable subsets
    Schuster, Peters
    Zappe, Julia
    [J]. LOGIQUE ET ANALYSE, 2008, (204) : 317 - 329
  • [2] The Creating Subject, the Brouwer-Kripke Schema, and infinite proofs
    van Atten, Mark
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2018, 29 (06): : 1565 - 1636
  • [3] A logic for metric and topology
    Wolter, F
    Zakharyaschev, M
    [J]. JOURNAL OF SYMBOLIC LOGIC, 2005, 70 (03) : 795 - 828
  • [4] Survey of Schema Languages: On a Software Complexity Metric
    Sotonwa, Kehinde
    Adeyiga, Johnson
    Adenibuyan, Michael
    Dosunmu, Moyinoluwa
    [J]. ADVANCES IN INFORMATION AND COMMUNICATION, FICC, VOL 2, 2023, 652 : 349 - 361
  • [5] GML Topology Data Storage Schema Design
    Li, Yuzhen
    Lu, Jianming
    Guan, Jihong
    Fan, Mingying
    Haggag, Ayman
    Yahagi, Takashi
    [J]. JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2007, 11 (06) : 701 - 708
  • [6] Neutrosophic Triplet Metric Topology
    Sahin, Memet
    Kargin, Abdullah
    [J]. NEUTROSOPHIC SETS AND SYSTEMS, 2019, 27 : 154 - 162
  • [7] ORDER, TOPOLOGY AND METRIC IN GIS
    KAINZ, W
    [J]. TECHNICAL PAPERS : 1989 ASPRS/ACSM ANNUAL CONVENTION, VOL 4: GIS/LIS, 1989, : 154 - 160
  • [8] Neutrosophic Triplet Metric Topology
    şahin, Memet
    Kargin, Abdullah
    [J]. Neutrosophic Sets and Systems, 2019, 27 : 154 - 162
  • [9] Topology and curvature of metric spaces
    Joharinad, Parvaneh
    Jost, Juergen
    [J]. ADVANCES IN MATHEMATICS, 2019, 356
  • [10] Metric spaces in synthetic topology
    Bauer, Andrei
    Lesnik, Davorin
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 2012, 163 (02) : 87 - 100