Identification of Putative Aquaporin Genes and Their Expression Analysis under Hypoxic Conditions in Soybean [Glycine max (L.) Merr.]

被引:5
|
作者
Matsuo, Naoki [1 ]
Nanjo, Yohei [2 ]
Tougou, Makoto [2 ]
Nakamura, Takuji [3 ]
Nishizawa, Keito [2 ]
Komatsu, Setsuko [2 ]
Shimamura, Satoshi [4 ]
机构
[1] Kyushu Okinawa Agr Res Ctr, Natl Agr & Food Res Org, Fukuoka 8330041, Japan
[2] Natl Inst Crop Sci, Natl Agr & Food Res Org, Tsukuba, Ibaraki 3058518, Japan
[3] Hokkaido Agr Res Ctr, Natl Agr & Food Res Org, Sapporo, Hokkaido 0628555, Japan
[4] Tokoku Agr Res Ctr, Natl Agr & Food Res Org, Akita 0192112, Japan
关键词
Aquaporin; Gene expression; Plasma membrane intrinsic protein; Root hypoxia; Soybean; PLASMA-MEMBRANE AQUAPORINS; MAJOR INTRINSIC PROTEINS; ROOT HYDRAULIC CONDUCTIVITY; POPULUS-TRICHOCARPA; FLOOD IRRIGATION; WATER TRANSPORT; DROUGHT STRESS; ABSCISIC-ACID; FAMILY; MAIZE;
D O I
10.1626/pps.15.278
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The aims of this study were to detect plasma-membrane intrinsic protein type 2 (PIP2) genes of soybean (cv. Eiffel) and to analyze mRNA levels of these genes under normoxic (control) and hypoxic conditions. A sequence similarity search with cDNA sequences in soybean genome revealed three putative aquaporin genes with high homology to GmPIP2;2. The genes were designated GmPIP2 genes. The mRNA levels in roots of soybean seedlings were measured at 3, 6, 12, and 27 hr after hypoxic stress onset. The mRNA levels of all GmPIP2s showed dear diurnal changes in the control, meanwhile, those under hypoxic conditions were significantly down-regulated even at 3 hr after stress onset. These results suggest that the four GmPIP2 genes are transcriptionally co-regulated by the diurnal change and oxygen concentration in the surrounding environment, and the transcriptional regulation may be involved in adjustment of water-transport in roots of soybean seedlings.
引用
收藏
页码:278 / 283
页数:6
相关论文
共 50 条
  • [31] Water Stress Indices as Indicators of Silage Soybean [Glycine max (L.) Merr.] Productivity Under Drought Conditions
    Gokkus, Mualla Keten
    Tanriverdi, Cagatay
    Degirmenci, Hasan
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2025, 211 (01)
  • [32] Polygenic inheritance of canopy wilting in soybean [Glycine max (L.) Merr.]
    Charlson, Dirk V.
    Bhatnagar, Sandeep
    King, C. Andy
    Ray, Jeffery D.
    Sneller, Clay H.
    Carter, Thomas E., Jr.
    Purcell, Larry C.
    THEORETICAL AND APPLIED GENETICS, 2009, 119 (04) : 587 - 594
  • [33] Development of Haploid Embryos from Soybean (Glycine max (L.) Merr.)
    Sharma, Deepshikha
    Ramlal, Ayyagari
    Lal, Sanjay Kumar
    Raju, Dhandapani
    Saini, Manisha
    Talukdar, Akshay
    Mallikarjun, Bingi Pujari
    Subramaniam, Sreeramanan
    Rajendran, Ambika
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2024, 60 (01) : S155 - S155
  • [34] Effect of seed coating on the yield of soybean Glycine max (L.) Merr.
    Jarecki, Waclaw
    Wietecha, Justyna
    PLANT SOIL AND ENVIRONMENT, 2021, 67 (08) : 468 - 473
  • [35] Polygenic inheritance of canopy wilting in soybean [Glycine max (L.) Merr.]
    Dirk V. Charlson
    Sandeep Bhatnagar
    C. Andy King
    Jeffery D. Ray
    Clay H. Sneller
    Thomas E. Carter
    Larry C. Purcell
    Theoretical and Applied Genetics, 2009, 119 : 587 - 594
  • [36] Relationship Between the Soybean (Glycine max L. Merr.) Yield Components and Seed Yield Under Irrigation Conditions
    Subasic, Galic D.
    Jurisic, M.
    Rebekic, A.
    Josipovic, M.
    Radocaj, D.
    Rapcan, I
    POLJOPRIVREDA, 2022, 28 (01): : 32 - 38
  • [37] Mapping quantitative trait loci for root development under hypoxia conditions in soybean (Glycine max L. Merr.)
    Loc Van Nguyen
    Takahashi, Ryoji
    Githiri, Stephen Mwangi
    Rodriguez, Tito O.
    Tsutsumi, Nobuko
    Kajihara, Sayuri
    Sayama, Takasi
    Ishimoto, Masao
    Harada, Kyuya
    Suematsu, Keisuke
    Abiko, Tomomi
    Mochizuki, Toshihiro
    THEORETICAL AND APPLIED GENETICS, 2017, 130 (04) : 743 - 755
  • [38] Mapping quantitative trait loci for root development under hypoxia conditions in soybean (Glycine max L. Merr.)
    Loc Van Nguyen
    Ryoji Takahashi
    Stephen Mwangi Githiri
    Tito O. Rodriguez
    Nobuko Tsutsumi
    Sayuri Kajihara
    Takasi Sayama
    Masao Ishimoto
    Kyuya Harada
    Keisuke Suematsu
    Tomomi Abiko
    Toshihiro Mochizuki
    Theoretical and Applied Genetics, 2017, 130 : 743 - 755
  • [39] Effect of Vacuum Soaking on the Properties of Soybean (Glycine max (L.) Merr.)
    Xiao, Gongnian
    Gong, Jinyan
    Ge, Qing
    You, Yuru
    INTERNATIONAL JOURNAL OF FOOD ENGINEERING, 2015, 11 (01) : 151 - 155
  • [40] Molecular Characterization of Magnesium Chelatase in Soybean [Glycine max (L.) Merr.]
    Zhang, Dan
    Chang, Enjie
    Yu, Xiaoxia
    Chen, Yonghuan
    Yang, Qinshuai
    Cao, Yanting
    Li, Xiukun
    Wang, Yuhua
    Fu, Aigen
    Xu, Min
    FRONTIERS IN PLANT SCIENCE, 2018, 9