Explanation-based Graph Neural Networks for Graph Classification

被引:0
|
作者
Seo, Sangwoo [1 ]
Jung, Seungjun [1 ]
Kim, Changick [1 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Sch Elect Engn, 291 Daehak Ro, Daejeon 34141, South Korea
关键词
D O I
10.1109/ICPR56361.2022.9956478
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph Neural Network models can be used to quickly analyze interactions between multiple data expressed in a graph structure, with high accuracy. Previous studies accurately extract subgraphs which have a significant influence on the whole graph, providing accurate explanations for predictions of GNN. We noted that explanation components could help improve classification performance as unique representations of each class. Therefore, we suggest the GNN performance can be further improved by using explanation components. In this paper, we propose an Explanation-Based Graph Neural Networks (EBGNN) that utilizes contrastive learning at the instance level, by applying explanation components. In EBGNN, the explanation components ensure similarity for instances within the same class, and promote separability for instances in different classes. Finally, we conducted an evaluation on five benchmark datasets (MUTAG, IMDB-BINARY, PROTEINS, NCI1, and DD). Our experiment showed a significant increase in graph classification performance compared to state-of-the-art methods.
引用
收藏
页码:2836 / 2842
页数:7
相关论文
共 50 条
  • [21] Active and Semi-Supervised Graph Neural Networks for Graph Classification
    Xie, Yu
    Lv, Shengze
    Qian, Yuhua
    Wen, Chao
    Liang, Jiye
    IEEE TRANSACTIONS ON BIG DATA, 2022, 8 (04) : 920 - 932
  • [22] Differentially Private Graph Neural Networks for Whole-Graph Classification
    Mueller, Tamara T.
    Paetzold, Johannes C.
    Prabhakar, Chinmay
    Usynin, Dmitrii
    Rueckert, Daniel
    Kaissis, Georgios
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (06) : 7308 - 7318
  • [23] Two-Stage Training of Graph Neural Networks for Graph Classification
    Manh Tuan Do
    Noseong Park
    Kijung Shin
    Neural Processing Letters, 2023, 55 : 2799 - 2823
  • [24] Graph alternate learning for robust graph neural networks in node classification
    Zhang, Baoliang
    Guo, Xiaoxin
    Tu, Zhenchuan
    Zhang, Jia
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (11): : 8723 - 8735
  • [25] Two-Stage Training of Graph Neural Networks for Graph Classification
    Do, Manh Tuan
    Park, Noseong
    Shin, Kijung
    NEURAL PROCESSING LETTERS, 2023, 55 (03) : 2799 - 2823
  • [26] Bipartite Graph Coarsening for Text Classification Using Graph Neural Networks
    dos Santos, Nicolas Roque
    Minatel, Diego
    Baria Valejo, Alan Demetrius
    Lopes, Alneu de A.
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2023, PT I, 2024, 14469 : 589 - 604
  • [27] Graph alternate learning for robust graph neural networks in node classification
    Baoliang Zhang
    Xiaoxin Guo
    Zhenchuan Tu
    Jia Zhang
    Neural Computing and Applications, 2022, 34 : 8723 - 8735
  • [28] GNNGLY: Graph Neural Networks for Glycan Classification
    Alkuhlani, Alhasan
    Gad, Walaa
    Roushdy, Mohamed
    Salem, Abdel-Badeeh M.
    IEEE ACCESS, 2023, 11 : 51838 - 51847
  • [29] A comparison of graph neural networks for malware classification
    Malhotra, Vrinda
    Potika, Katerina
    Stamp, Mark
    JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES, 2024, 20 (01) : 53 - 69
  • [30] Recurrent Graph Neural Networks for Text Classification
    Wei, Xinde
    Huang, Hai
    Ma, Longxuan
    Yang, Ze
    Xu, Liutong
    PROCEEDINGS OF 2020 IEEE 11TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2020), 2020, : 91 - 97