Detecting Violent Scenes in Movies by Auditory and Visual Cues

被引:0
|
作者
Gong, Yu [1 ,2 ,3 ]
Wang, Weiqiang [1 ,2 ,3 ]
Jiang, Shuqiang [1 ,2 ]
Huang, Qingming [1 ,2 ,3 ]
Gao, Wen [3 ,4 ]
机构
[1] Chinese Acad Sci, Key Lab Intell Info Proc, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Comp Technol Inst, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Grad Sch, Beijing 100190, Peoples R China
[4] Peking Univ, Inst Digital Media, Beijing 100871, Peoples R China
关键词
Violence Detection; Semi-supervised Cross Feature Learning; Audio Effects;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To detect violence in movies, we present a three-stage method integrating visual and auditory cues. In our method, those shots with potential violent content are first identified according to universal film-making rules. A modified semi-supervised learning technique based on semi-supervised cross feature learning (SCFL) is exploited, since it is capable to combine different types of features and use unlabeled data to improve the classification performance. Then, typical violence-related audio effects are further detected for the candidate shots, and we manage to transform the confidences outputted by the classifiers of various audio events into a shot-based violence score. Finally, the first two-stage probabilistic outputs are integrated in a boosting way to generate the final inference. The experimental results on four typical action movies preliminarily show the effectiveness of our method.
引用
收藏
页码:317 / +
页数:2
相关论文
共 50 条
  • [21] Comparison of Visual, Content, and Auditory Cues in Interviewing
    Giedt, F. Harold
    JOURNAL OF CONSULTING PSYCHOLOGY, 1955, 19 (06): : 407 - 416
  • [22] Auditory emotional cues enhance visual perception
    Zeelenberg, Rene
    Bocanegra, Bruno R.
    COGNITION, 2010, 115 (01) : 202 - 206
  • [23] EVALUATION OF LOW-LEVEL FEATURES FOR DETECTING VIOLENT SCENES IN VIDEOS
    Vu Lam
    Le, Duy-Dinh
    Phan, Sang
    Satoh, Shin'ichi
    Duc Anh Duong
    Thanh Duc Ngo
    2013 INTERNATIONAL CONFERENCE OF SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR), 2013, : 213 - 218
  • [24] Detecting Violent Content in Hollywood Movies by Mid-level Audio Representations
    Acar, Esra
    Hopfgartner, Frank
    Albayrak, Sahin
    2013 11TH INTERNATIONAL WORKSHOP ON CONTENT-BASED MULTIMEDIA INDEXING (CBMI 2013), 2013, : 73 - 78
  • [25] Detecting generic visual events with temporal cues
    Xie, Lexing
    Xu, Dong
    Ebadollahi, Shahram
    Scheinberg, Katya
    Chang, Shih-Fu
    Smith, John R.
    2006 FORTIETH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1-5, 2006, : 54 - +
  • [26] Visual form cues, biological motions, auditory cues, and even olfactory cues interact to affect visual sex discriminations
    Van Der Zwan, Rick
    Brooks, Anna
    Blair, Duncan
    Machatch, Coralia
    Hacker, Graeme
    I-PERCEPTION, 2011, 2 (04): : 361 - 361
  • [27] Visual-Auditory Redirection: Multimodal Integration of Incongruent Visual and Auditory Cues for Redirected Walking
    Gao, Peizhong
    Matsumoto, Keigo
    Narumi, Takuji
    Hirose, Michitaka
    2020 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY (ISMAR 2020), 2020, : 639 - 648
  • [28] Understanding Road Scenes Using Visual Cues and GPS Information
    Alvarez, Jose M.
    Lumbreras, Felipe
    Lopez, Antonio M.
    Gevers, Theo
    COMPUTER VISION - ECCV 2012, PT III, 2012, 7585 : 635 - 638
  • [29] Do violent movies make violent children?
    McLellan, F
    LANCET, 2002, 359 (9305): : 502 - 502
  • [30] Dynamic auditory cues modulate visual motion processing
    Teramoto, W.
    Hidaka, S.
    Gyoba, J.
    Suzuki, Y.
    PERCEPTION, 2008, 37 : 72 - 72