Chitosan Modified Biochar Increases Soybean (Glycine max L.) Resistance to Salt-Stress by Augmenting Root Morphology, Antioxidant Defense Mechanisms and the Expression of Stress-Responsive Genes

被引:73
|
作者
Mehmood, Sajid [1 ,2 ]
Ahmed, Waqas [1 ,2 ]
Ikram, Muhammad [3 ]
Imtiaz, Muhammad [4 ]
Mahmood, Sammina [5 ]
Tu, Shuxin [6 ]
Chen, Diyun [1 ,2 ]
机构
[1] Guangzhou Univ, Sch Environm Sci & Engn, Guangdong Prov Key Lab Radionuclides Pollut Contr, Guangzhou 510006, Peoples R China
[2] Guangzhou Univ, Sch Civil Engn, Guangzhou 510006, Peoples R China
[3] Huazhong Agr Univ, Coll Plant Sci & Technol, Stat Genom Lab, Wuhan 430070, Peoples R China
[4] Natl Inst Biotechnol & Genet Engn, Soil & Environm Biotechnol Div, Faisalabad 38000, Pakistan
[5] Univ Educ, Div Sci & Technol, Dept Bot, Lahore 54000, Pakistan
[6] Huazhong Agr Univ, Coll Resources & Environm, Wuhan 430070, Peoples R China
来源
PLANTS-BASEL | 2020年 / 9卷 / 09期
关键词
chitosan; biochar; sodium; kinetics; antioxidants; salinity tolerance genes; ARBUSCULAR MYCORRHIZAL FUNGI; SALINITY TOLERANCE; LIPID-PEROXIDATION; OXIDATIVE STRESS; AQUEOUS-SOLUTION; PROTECTIVE ROLE; NITRIC-OXIDE; IMPROVE; PLANTS; GROWTH;
D O I
10.3390/plants9091173
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Soybean is an important oilseed crop that provides high-quality protein and vegetable oil. Salinity constitutes a negative abiotic factor that reduces soybean plant growth, production, and quality. The adsorption of Na+ by chitosan-modified biochar (CMB) has a significant effect on salinity but the application of CMB is limited in soybean. In the current study, CMB was used for characterization of physiological, biochemical, and molecular responses of soybean under salt stress. Comparison of CMB and unmodified (as-is) biochar (BR) demonstrated a significant difference between them shown by using Fourier transform infrared spectroscopy (FTIR), scan electron microscopy (SEM), Brunauer-Emmett-Teller (BET), elemental analysis and z-potential measurement. Pseudo-first and second-order better suited for the analysis of Na+ adsorption kinetics. The salt-stress reduced the soybean plants growth, root architecture characteristics, biomass yield, nutrients acquisition, chlorophyll contents, soluble protein, and sugar contents, while CMB with salt-stress significantly increased the above parameters. Moreover, CMB also reduced the salinity-induced increase in the Na+, glycine betaine (GB), proline, hydrogen peroxide (H2O2), and malondialdehyde (MDA) levels in plants. The antioxidant activity and gene expression levels triggered by salinity but with the application of CMB significantly further boosted the expression profile of four genes (CAT,APX,POD and SOD) encoding antioxidant enzyme and two salt-tolerant conferring genes (GmSALT3 and CHS). Overall, these findings demonstrate the crucial role of CMB in minimizing the adverse effects of high salinity on soybean growth and efficiency of the mechanisms enabling plant protection from salinity through a shift of the architecture of the root system and enhancing the antioxidant defense systems and stress-responsive genes for achieving sustainable crop production.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 23 条