Decomposition of a""-group-valued measures

被引:4
|
作者
Barbieri, Giuseppina [1 ]
Valente, Antonietta
Weber, Hans [1 ]
机构
[1] Univ Udine, I-33100 Udine, Italy
关键词
D-lattice; measure; lattice ordered group; decomposition; Hammer-Sobczyk decomposition;
D O I
10.1007/s10587-012-0065-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deal with decomposition theorems for modular measures A mu: L -> G defined on a D-lattice with values in a Dedekind complete a""-group. Using the celebrated band decomposition theorem of Riesz in Dedekind complete a""-groups, several decomposition theorems including the Lebesgue decomposition theorem, the Hewitt-Yosida decomposition theorem and the Alexandroff decomposition theorem are derived. Our main result-also based on the band decomposition theorem of Riesz-is the Hammer-Sobczyk decomposition for a""-group-valued modular measures on D-lattices. Recall that D-lattices (or equivalently lattice ordered effect algebras) are a common generalization of orthomodular lattices and of MV-algebras, and therefore of Boolean algebras. If L is an MV-algebra, in particular if L is a Boolean algebra, then the modular measures on L are exactly the finitely additive measures in the usual sense, and thus our results contain results for finitely additive G-valued measures defined on Boolean algebras.
引用
收藏
页码:1085 / 1100
页数:16
相关论文
共 50 条
  • [21] Group-valued measures on coarse-grained quantum logics
    Anna De Simone
    Pavel Pták
    [J]. Czechoslovak Mathematical Journal, 2007, 57 : 737 - 746
  • [22] CHARACTERIZATION OF GROUP-VALUED MEASURES SATISFYING COUNTABLE CHAIN CONDITION
    LIPECKI, Z
    [J]. COLLOQUIUM MATHEMATICUM, 1974, 31 (02) : 231 - 234
  • [23] Group-valued equivariant localization
    A. Alekseev
    E. Meinrenken
    C. Woodward
    [J]. Inventiones mathematicae, 2000, 140 : 327 - 350
  • [24] INTEGRATING GROUP-VALUED FUNCTIONS
    BUCKLEY, JJ
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (07): : 1054 - &
  • [25] Group-valued equivariant localization
    Alekseev, A
    Meinrenken, E
    Woodward, C
    [J]. INVENTIONES MATHEMATICAE, 2000, 140 (02) : 327 - 350
  • [26] ON SPACES OF GROUP-VALUED FUNCTIONS
    Kocinac, Ljubisa D. R.
    [J]. FILOMAT, 2011, 25 (02) : 163 - 172
  • [27] Extensions of group-valued modular maps
    Gerd Waldschaks
    [J]. Archiv der Mathematik, 1997, 69 : 70 - 74
  • [28] SOME NEW TYPES OF FILTER LIMIT THEOREMS FOR TOPOLOGICAL GROUP-VALUED MEASURES
    Boccuto, Antonio
    Dimitriou, Xenofon
    [J]. REAL ANALYSIS EXCHANGE, 2013, 39 (01) : 139 - 174
  • [29] Extensions of group-valued modular maps
    Waldschaks, G
    [J]. ARCHIV DER MATHEMATIK, 1997, 69 (01) : 70 - 74
  • [30] Compactness in Groups of Group-Valued Mappings
    Caponetti, Diana
    Trombetta, Alessandro
    Trombetta, Giulio
    [J]. MATHEMATICS, 2022, 10 (21)