A quantile inequality for location-scale distributions

被引:1
|
作者
Elster, Clemens [1 ]
Klauenberg, Katy [1 ]
机构
[1] Phys Tech Bundesanstalt, Abbestr 2-12, D-10587 Berlin, Germany
关键词
Quantile inequality; Location-scale distribution; Attribute sampling; AREA;
D O I
10.1016/j.spl.2020.108851
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is shown that when X follows a location-scale distribution with continuous density function that has support R and 0 < q < p < 1, then P(vertical bar X vertical bar <= Delta) >= q implies P(vertical bar X vertical bar <= lambda Delta) >= p for some lambda > 1 and all values of the location and scale parameters. An explicit expression for the minimum lambda is proven for the family of scaled and shifted t-distributions. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条