Positive Solutions for Nonlinear Dirichlet Problems with Convection

被引:4
|
作者
Hu, Shouchuan [1 ,2 ]
Papageorgiou, Nikolas S. [3 ]
机构
[1] Shandong Normal Univ, Coll Math, Jinan, Shandong, Peoples R China
[2] Missouri State Univ, Dept Math, Springfield, MO 65804 USA
[3] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2020年 / 82卷 / 02期
关键词
Convection term; Indefinite drift coefficient; Nonlinear regularity; Nonlinear maximum principle; Truncation; Nonlinear Krein-Rutman theorem; P-LAPLACIAN; ELLIPTIC-EQUATIONS; DEPENDENCE;
D O I
10.1007/s00245-018-9534-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear Dirichlet problem driven by thep-Laplacian, a convection term and a(p - 1)-sublinear perturbation. First we assume that the coefficient in the convection term (drift coefficient) is sign changing. Using the theory of nonlinear operators of monotone type together with suitable truncation and comparison techniques we prove the existence of a positive smooth solution. When the drift coefficient is nonnegative, we are able to relax the conditions on the data of the problem.
引用
收藏
页码:451 / 470
页数:20
相关论文
共 50 条
  • [31] NONLINEAR DIRICHLET PROBLEMS WITH THE COMBINED EFFECTS OF SINGULAR AND CONVECTION TERMS
    Bai, Yunru
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2019,
  • [32] BOUNDARY BEHAVIOR OF SOLUTIONS TO A SINGULAR DIRICHLET PROBLEM WITH A NONLINEAR CONVECTION
    Li, Bo
    Zhang, Zhijun
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [33] Asymptotic behavior of positive solutions of a nonlinear Dirichlet problem
    Ben Othman, Sonia
    Khamessi, Bilel
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (02) : 925 - 933
  • [34] Multiple positive solutions for singular anisotropic Dirichlet problems
    Liu, Zhenhai
    Papageorgiou, Nikolaos S.
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2021, (47) : 1 - 12
  • [35] A remark on the uniqueness of positive solutions for some Dirichlet problems
    Afrouzi, GA
    Rasouli, SH
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (12) : 2773 - 2777
  • [36] Positive solutions for singular problems with multivalued convection
    Bai, Yunru
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 128
  • [37] UNIQUENESS OF SOLUTIONS FOR NONLINEAR DIRICHLET PROBLEMS WITH SUPERCRITICAL GROWTH
    Molle, Riccardo
    Passaseo, Donato
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2021, 57 (02) : 535 - 546
  • [38] Multiple Solutions for Nearly Resonant Nonlinear Dirichlet Problems
    Nikolaos S. Papageorgiou
    Francesca Papalini
    [J]. Potential Analysis, 2012, 37 : 247 - 279
  • [39] Multiple Solutions for Nearly Resonant Nonlinear Dirichlet Problems
    Papageorgiou, Nikolaos S.
    Papalini, Francesca
    [J]. POTENTIAL ANALYSIS, 2012, 37 (03) : 247 - 279
  • [40] MULTIPLE SOLUTIONS FOR NONLINEAR DIRICHLET PROBLEMS WITH CONCAVE TERMS
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    [J]. MATHEMATICA SCANDINAVICA, 2013, 113 (02) : 206 - 247