Positive Solutions for Nonlinear Dirichlet Problems with Convection

被引:4
|
作者
Hu, Shouchuan [1 ,2 ]
Papageorgiou, Nikolas S. [3 ]
机构
[1] Shandong Normal Univ, Coll Math, Jinan, Shandong, Peoples R China
[2] Missouri State Univ, Dept Math, Springfield, MO 65804 USA
[3] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2020年 / 82卷 / 02期
关键词
Convection term; Indefinite drift coefficient; Nonlinear regularity; Nonlinear maximum principle; Truncation; Nonlinear Krein-Rutman theorem; P-LAPLACIAN; ELLIPTIC-EQUATIONS; DEPENDENCE;
D O I
10.1007/s00245-018-9534-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear Dirichlet problem driven by thep-Laplacian, a convection term and a(p - 1)-sublinear perturbation. First we assume that the coefficient in the convection term (drift coefficient) is sign changing. Using the theory of nonlinear operators of monotone type together with suitable truncation and comparison techniques we prove the existence of a positive smooth solution. When the drift coefficient is nonnegative, we are able to relax the conditions on the data of the problem.
引用
收藏
页码:451 / 470
页数:20
相关论文
共 50 条
  • [1] Positive Solutions for Nonlinear Dirichlet Problems with Convection
    Shouchuan Hu
    Nikolas S. Papageorgiou
    [J]. Applied Mathematics & Optimization, 2020, 82 : 451 - 470
  • [2] Positive solutions for nonlinear Robin problems with convection
    Averna, Diego
    Papageorgiou, Nikolaos S.
    Tornatore, Elisabetta
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (06) : 1907 - 1920
  • [3] Positive solutions for nonlinear parametric singular Dirichlet problems
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    [J]. BULLETIN OF MATHEMATICAL SCIENCES, 2019, 9 (03)
  • [4] Radial symmetry of positive solutions to nonlinear polyharmonic Dirichlet problems
    Berchio, Elvise
    Gazzola, Filippo
    Weth, Tobias
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 620 : 165 - 183
  • [5] Nonexistence of positive classical solutions of a singular nonlinear dirichlet problem with a convection term
    Zhang, ZJ
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 27 (08) : 957 - 961
  • [6] Positive solutions for Dirichlet problems, of singular nonlinear fractional differential equations
    Agarwal, Ravi P.
    O'Regan, Donal
    Stanek, Svatoslav
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (01) : 57 - 68
  • [7] Positive solutions for nonlinear Neumann problems with singular terms and convection
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 136 : 1 - 21
  • [8] Positive solutions of semilinear Dirichlet problems
    dosAnjos, AG
    Zumpano, A
    [J]. NONLINEARITY, 1996, 9 (04) : 937 - 941
  • [9] Stability of solutions to extremum problems for the nonlinear convection–diffusion–reaction equation with the Dirichlet condition
    R. V. Brizitskii
    Zh. Yu. Saritskaya
    [J]. Computational Mathematics and Mathematical Physics, 2016, 56 : 2011 - 2022
  • [10] POSITIVE SOLUTIONS OF NONLINEAR FRACTIONAL BOUNDARY VALUE PROBLEMS WITH DIRICHLET BOUNDARY CONDITIONS
    Kong, Qingkai
    Wang, Min
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2012, (17) : 1 - 13