Modelling competing risks in nephrology research: an example in peritoneal dialysis

被引:20
|
作者
Teixeira, Laetitia [1 ,3 ]
Rodrigues, Anabela [2 ,4 ,5 ]
Carvalho, Maria J. [4 ,5 ]
Cabrita, Antonio [4 ,5 ]
Mendonca, Denisa [2 ,6 ]
机构
[1] Univ Porto, Inst Biomed Sci Abel Salazar ICBAS, Doctoral Program Appl Math PDMA, P-4100 Oporto, Portugal
[2] Univ Porto, Inst Publ Hlth ISPUP, P-4100 Oporto, Portugal
[3] Univ Porto, Inst Biomed Sci Abel Salazar ICBAS, Res & Educ Unit Ageing UNIFAI, P-4100 Oporto, Portugal
[4] CHP Hosp Santo Antonio, Nephrol Unit, Oporto, Portugal
[5] Univ Porto, Inst Biomed Sci Abel Salazar ICBAS, UMIB, P-4100 Oporto, Portugal
[6] Univ Porto, Inst Biomed Sci Abel Salazar ICBAS, Populat Studies Dept, P-4100 Oporto, Portugal
来源
BMC NEPHROLOGY | 2013年 / 14卷
关键词
Cause-specific hazard model; Competing risks; Cumulative incidence function; Peritoneal dialysis; Subdistribution hazard model; Survival analysis; KAPLAN-MEIER METHOD; CUMULATIVE INCIDENCE; SURVIVAL; MORTALITY; OUTCOMES; PATIENT; HEMODIALYSIS; FAILURE; UPDATE; DEATH;
D O I
10.1186/1471-2369-14-110
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Background: Modelling competing risks is an essential issue in Nephrology Research. In peritoneal dialysis studies, sometimes inappropriate methods (i.e. Kaplan-Meier method) have been used to estimate probabilities for an event of interest in the presence of competing risks. In this situation a competing risk analysis should be preferable. The objectives of this study are to describe the bias resulting from the application of standard survival analysis to estimate peritonitis-free patient survival and to provide alternative statistical approaches taking competing risks into account. Methods: The sample comprises patients included in a university hospital peritoneal dialysis program between October 1985 and June 2011 (n = 449). Cumulative incidence function and competing risk regression models based on cause-specific and subdistribution hazards were discussed. Results: The probability of occurrence of the first peritonitis is wrongly overestimated using Kaplan-Meier method. The cause-specific hazard model showed that factors associated with shorter time to first peritonitis were age (= 55 years) and previous treatment (haemodialysis). Taking competing risks into account in the subdistribution hazard model, age remained significant while gender (female) but not previous treatment was identified as a factor associated with a higher probability of first peritonitis event. Conclusions: In the presence of competing risks outcomes, Kaplan-Meier estimates are biased as they overestimated the probability of the occurrence of an event of interest. Methods which take competing risks into account provide unbiased estimates of cumulative incidence for each specific outcome experienced by patients. Multivariable regression models such as those based on cause-specific hazard and on subdistribution hazard should be used in this competing risk setting.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Guidelines of the Peritoneal Dialysis Study Group of the Italian Society of Nephrology
    Corciulo, Roberto
    La Mille, Vincenzo
    JOURNAL OF NEPHROLOGY, 2013, 26 : S2 - S3
  • [22] CONTINUOUS AMBULATORY PERITONEAL-DIALYSIS - PANDORA GIFT TO NEPHROLOGY
    SWAINSON, CP
    NEW ZEALAND MEDICAL JOURNAL, 1983, 96 (733) : 424 - 425
  • [23] Clinical guide of the Spanish Society of Nephrology on the prevention and treatment of peritoneal infection in peritoneal dialysis
    Perez Fontan, Miguel
    Moreiras Plaza, Mercedes
    Prieto Velasco, Mario
    Quereda Rodriguez-Navarro, Carlos
    Bajo Rubio, Maria Auxiliadora
    Borras Sans, Merce
    de la Espada Pina, Veronica
    Perez Contreras, Javier
    del Peso Gilsanz, Gloria
    Ponz Clemente, Esther
    Quiros Ganga, Pedro
    Remon Rodriguez, Cesar
    Rodriguez-Carmona, Ana
    Sanchez Alvarez, Emilio
    Vega Diaz, Nicanor
    Vera Rivera, Manel
    Areste Fosalba, Nuria
    Bordes Benitez, Ana
    Castro Notario, Maria Jose
    Fernandez Perpen, Antonio
    Fernandez Reyes, Maria Jose
    Gasch Blasi, Oriol
    Gil Cunquero, Jose Manuel
    Julian Mauro, Juan Carlos
    Minguela Pesquera, Jose Ignacio
    Munar Vila, Maria Antonia
    Nunez del Moral, Miguel
    Perez Lopez, Teresa
    Portoles Perez, Jose
    Rivera Gorrin, Maite
    Rodriguez Suarez, Carmen
    Sanchez Camargo, Mario
    Soriano Cabrera, Maria Sagrario
    NEFROLOGIA, 2022, 42 : 3 - 58
  • [24] MATHEMATICAL AND COMPUTER MODELLING OF PERITONEAL DIALYSIS
    Waniewski, J.
    INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS, 2009, 32 (07): : 408 - 408
  • [25] Risks of gastrostomy tubes in children on peritoneal dialysis
    Ramage, IJ
    Balfe, JW
    PERITONEAL DIALYSIS INTERNATIONAL, 1998, 18 (01): : 84 - 85
  • [26] Proteomic Research in Peritoneal Dialysis
    Bonomini, Mario
    Borras, Francesc E.
    Troya-Saborido, Maribel
    Carreras-Planella, Laura
    Di Liberato, Lorenzo
    Arduini, Arduino
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (15) : 1 - 21
  • [27] Competing Risksand Multistate Modelsin Clinical Nephrology Research
    Ross-Driscoll, Katie
    Patzer, Rachel E.
    KIDNEY INTERNATIONAL REPORTS, 2022, 7 (11): : 2325 - 2326
  • [28] Clinical research in peritoneal dialysis
    Coles, GA
    ADVANCED GLYCATION END PRODUCTS IN NEPHROLOGY, 2001, 131 : 125 - 131
  • [29] Joint modelling of longitudinal and competing risks data
    Williamson, P. R.
    Kolamunnage-Dona, R.
    Philipson, R.
    Marson, A. G.
    STATISTICS IN MEDICINE, 2008, 27 (30) : 6426 - 6438
  • [30] Impact of Remote Monitoring on Standardized Outcomes in Nephrology-Peritoneal Dialysis
    Javier Centellas-Perez, Francisco
    Ortega-Cerrato, Agustin
    Vera, Manel
    Jesus Devesa-Buch, Ramon
    Munoz-de-Bustillo, Eduardo
    Prats, Mercedes
    Alonso-Valente, Rafael
    Pedro Morais, Jose
    Jaro Cara-Espada, Paula
    Yuste-Lozano, Claudia
    Montomoli, Marco
    Gonzalez-Rico, Miguel
    Diez-Ojea, Beatriz
    Barbosa, Francesc
    Iriarte, Miren
    Flores, Carmen
    Luis Quiros-Ganga, Pedro
    Espinel, Laura
    Paraiso, Vicente
    Pena-Ortega, Maria
    Manzano, Diana
    Cancho, Barbara
    Perez-Martinez, Juan
    KIDNEY INTERNATIONAL REPORTS, 2024, 9 (02): : 266 - 276