Microstructural evolution of a nanotwinned steel under extremely high-strain-rate deformation

被引:22
|
作者
Zhou, P. [1 ]
Liang, Z. Y. [1 ]
Huang, M. X. [1 ]
机构
[1] Univ Hong Kong, Dept Mech Engn, Pokfulam Rd, Hong Kong, Hong Kong, Peoples R China
关键词
TWIP steel; Nanotwin; Ballistic impact; High-strain-rate deformation; INDUCED PLASTICITY STEELS; AUSTENITIC STAINLESS-STEEL; RATE SENSITIVITY; FRACTURE-TOUGHNESS; ULTRAHIGH-STRENGTH; BALLISTIC IMPACT; NANOSCALE TWINS; FLOW-STRESS; COPPER; BEHAVIOR;
D O I
10.1016/j.actamat.2018.02.062
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanotwinned metals are promising structural materials for resisting impact due to their excellent combination of strength and ductility. In this study, the microstructural evolution of a nanotwinned steel under extremely high-strain-rate ballistic impact was systematically investigated by nanoindentation as well as detailed electron microscopy characterization. It is found that the nanotwin structure remains similar after ballistic impact, while secondary twinning activates in a limited portion of grains. In contrast, dislocation gliding is the main plasticity mechanism in the nanotwinned steel during ballistic impact, which leads to substantial increase of hardness in the severely-deformed region close to the fracture surface. Dislocation multiplication is promoted during ballistic impact due to the phonon drag effect, resulting in a hardness increment that exceeds the maximum value achieved in quasi-static tension. In addition, recrystallization occurs in the nanotwinned steel during ballistic impact due to the significant temperature increase when the hot bullet contacted and transferred sufficient heat to the nanotwinned steel. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:407 / 415
页数:9
相关论文
共 50 条
  • [31] Elastoplastic behavior of copper upon high-strain-rate deformation
    R. G. Chembarisova
    The Physics of Metals and Metallography, 2015, 116 : 592 - 600
  • [32] Evolution of microstructure and strength during high-strain, high-strain-rate deformation of tantalum and tantalum based alloys
    Marquis, FDS
    FUNDAMENTAL ISSUES AND APPLICATIONS OF SHOCK-WAVE AND HIGH-STRAIN-RATE PHENOMENA, PROCEEDINGS, 2001, : 87 - 97
  • [33] Shear localization in high-strain-rate deformation of granular alumina
    Nesterenko, VF
    Meyers, MA
    Chen, HC
    ACTA MATERIALIA, 1996, 44 (05) : 2017 - 2026
  • [34] Microstructural evolution during fracture induced by high strain rate deformation of 100Cr6 steel
    Ryttberg, K.
    Wedel, M. Knutson
    Dahlman, P.
    Nyborg, L.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2009, 209 (07) : 3325 - 3334
  • [35] Microstructure evolution of 2195 Al-Li alloy subjected to high-strain-rate deformation
    Yang, Yang
    Ma, Fei
    Hu, Hai Bo
    Zhang, Qing Ming
    Zhang, Xiao Wei
    Materials Science and Engineering: A, 2014, 606 : 299 - 303
  • [36] Elastoplastic behavior of copper upon high-strain-rate deformation
    Chembarisova, R. G.
    PHYSICS OF METALS AND METALLOGRAPHY, 2015, 116 (06): : 592 - 600
  • [37] Microstructure evolution of 2195 Al-Li alloy subjected to high-strain-rate deformation
    Yang, Yang
    Ma, Fei
    Hu, Hai Bo
    Zhang, Qing Ming
    Zhang, Xiao Wei
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 606 : 299 - 303
  • [38] HIGH-STRAIN, HIGH-STRAIN-RATE DEFORMATION OF TANTALUM AND TANTALUM TUNGSTEN ALLOYS
    VECCHIO, KS
    JOURNAL DE PHYSIQUE IV, 1994, 4 (C8): : 301 - 306
  • [39] Shear localization and recrystallization in high-strain, high-strain-rate deformation of tantalum
    Nesterenko, VF
    Meyers, MA
    LaSalvia, JC
    Bondar, MP
    Chen, YJ
    Lukyanov, YL
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1997, 229 (1-2): : 23 - 41
  • [40] Effects of Temperature and Strain Rate on Flow Behavior and Microstructural Evolution of Super Duplex Stainless Steel under Hot Deformation
    Ming MA
    Hua DING
    Zheng-you TANG
    Jing-wei ZHAO
    Zhou-hua JIANG
    Guang-wei FAN
    JournalofIronandSteelResearch(International), 2016, 23 (03) : 244 - 252