Combinatorial multi-parametric quadratic programming with saturation matrix based pruning

被引:0
|
作者
Feller, Christian [1 ,2 ]
Johansen, Tor Arne [2 ]
Olaru, Sorin [3 ]
机构
[1] Univ Stuttgart, Inst Syst Theory & Automat Control, Pfaffenwaldring 9, D-70550 Stuttgart, Germany
[2] NTNU, Dept Engn Cybernet, N-7491 Trondheim, Norway
[3] SUPELEC Syst Sci E3S, Dept Automat Control, F-91192 Gif Sur Yvette, France
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The goal of multi-parametric quadratic programming (mpQP) is to compute analytic solutions to parameter-dependent constrained optimization problems, e. g., in the context of explicit linear MPC. We propose an improved combinatorial mpQP algorithm based on a saturation matrix pruning criterion which uses geometric properties of the constraint polyhedron for excluding infeasible constraint combinations from the candidate active set enumeration. Performance improvements are discussed for both practical and random example problems from the area of explicit linear MPC.
引用
收藏
页码:4562 / 4567
页数:6
相关论文
共 50 条
  • [21] A multi-parametric optimization approach for bilevel mixed-integer linear and quadratic programming problems
    Avraamidou, Styliani
    Pistikopoulos, Efstratios N.
    COMPUTERS & CHEMICAL ENGINEERING, 2019, 125 : 98 - 113
  • [22] Attitude control by means of explicit model predictive control, via multi-parametric quadratic programming
    Hegrenæs, O
    Gravdahl, JT
    Tondel, P
    ACC: PROCEEDINGS OF THE 2005 AMERICAN CONTROL CONFERENCE, VOLS 1-7, 2005, : 901 - 906
  • [23] A multi-parametric programming approach for constrained dynamic programming problems
    Faisca, Nuno P.
    Kouramas, Konstantinos I.
    Saraiva, Pedro M.
    Rustem, Berc
    Pistikopoulos, Efstratios N.
    OPTIMIZATION LETTERS, 2008, 2 (02) : 267 - 280
  • [24] A multi-parametric programming approach for constrained dynamic programming problems
    Nuno P. Faísca
    Konstantinos I. Kouramas
    Pedro M. Saraiva
    Berç Rustem
    Efstratios N. Pistikopoulos
    Optimization Letters, 2008, 2 : 267 - 280
  • [25] Robust explicit MPC based on approximate multi-parametric convex programming
    de la Peña, DM
    Bemporad, A
    Filippi, C
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 2491 - 2496
  • [27] Theoretical and algorithmic advances in multi-parametric programming and control
    Pistikopoulos, Efstratios N.
    Dominguez, Luis
    Panos, Christos
    Kouramas, Konstantinos
    Chinchuluun, Altannar
    COMPUTATIONAL MANAGEMENT SCIENCE, 2012, 9 (02) : 183 - 203
  • [28] A Linear Programming Method Based on Proximal-Point Iterations With Applications to Multi-Parametric Programming
    Arnstrom, Daniel
    Bemporad, Alberto
    Axehill, Daniel
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 2066 - 2071
  • [29] Uncertainty Relationship Analysis for Multi-Parametric Programming in Optimization
    Cai, Tianxing
    Xu, Qiang
    ADVANCES IN GLOBAL OPTIMIZATION, 2015, 95 : 437 - 447
  • [30] Adjustable robust optimization through multi-parametric programming
    Styliani Avraamidou
    Efstratios N. Pistikopoulos
    Optimization Letters, 2020, 14 : 873 - 887