A systematic and efficient method to compute multi-loop master integrals

被引:121
|
作者
Liu, Xiao [1 ,2 ]
Ma, Yan-Qing [1 ,2 ,3 ,4 ]
Wang, Chen-Yu [1 ,2 ]
机构
[1] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[2] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China
[3] Peking Univ, Ctr High Energy Phys, Beijing 100871, Peoples R China
[4] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
ONE-LOOP AMPLITUDES; DIFFERENTIAL-EQUATIONS; FEYNMAN; REDUCTION; ALGORITHM; DIAGRAMS; PARTS;
D O I
10.1016/j.physletb.2018.02.026
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We propose a novel method to compute multi-loop master integrals by constructing and numerically solving a system of ordinary differential equations, with almost trivial boundary conditions. Thus it can be systematically applied to problems with arbitrary kinematic configurations. Numerical tests show that our method can not only achieve results with high precision, but also be much faster than the only existing systematic method sector decomposition. As a by product, we find a new strategy to compute scalar one-loop integrals without reducing them to master integrals. (C) 2018 The Author(s). Published by Elsevier B.V.
引用
收藏
页码:353 / 357
页数:5
相关论文
共 50 条
  • [31] Evaluating multi-loop Feynman integrals numerically through differential equations
    Manoj K. Mandal
    Xiaoran Zhao
    Journal of High Energy Physics, 2019
  • [32] Erratum: Numerical evaluation of multi-loop integrals using subtraction terms
    A. Freitas
    Journal of High Energy Physics, 2012
  • [33] Differential equations for multi-loop integrals and two-dimensional kinematics
    L. Ferro
    Journal of High Energy Physics, 2013
  • [34] Direct numerical evaluation of multi-loop integrals without contour deformation
    Roberto Pittau
    Bryan Webber
    The European Physical Journal C, 2022, 82
  • [35] Transforming differential equations of multi-loop Feynman integrals into canonical form
    Meyer, Christoph
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (04):
  • [36] SYSTEMATIC STRUCTURING OF COUPLING EQUATIONS FOR MULTI-LOOP MECHANISMS
    ANANTHARAMAN, M
    HILLER, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1989, 69 (05): : T303 - T305
  • [37] The SAGEX review on scattering amplitudes Chapter 4: Multi-loop Feynman integrals
    Bluemlein, Johannes
    Schneider, Carsten
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (44)
  • [38] Regularization with numerical extrapolation for finite and UV-divergent multi-loop integrals
    de Doncker, E.
    Yuasa, F.
    Kato, K.
    Ishikawa, T.
    Kapenga, J.
    Olagbemi, O.
    COMPUTER PHYSICS COMMUNICATIONS, 2018, 224 : 164 - 185
  • [39] SYSTEMATIC MULTI-LOOP CONTROL FOR AUTONOMOUS BICYCLE PATH FOLLOWING
    Bickford, D.
    Davison, D. E.
    2013 26TH ANNUAL IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2013, : 231 - 235
  • [40] Dimension Classification Method of Multi-Loop Planar Mechanism
    Zhao, Dengfeng
    Zeng, Guoying
    ADVANCES IN ENGINEERING DESIGN AND OPTIMIZATION, PTS 1 AND 2, 2011, 37-38 : 362 - 369