The method of nearby problems for estimation of numerical error in orbital-mechanics simulations

被引:0
|
作者
Jagat, Ashish [1 ]
Sinclair, Andrew J. [1 ]
机构
[1] Auburn Univ, Auburn, AL 36849 USA
关键词
Orbital mechanics; Numerical integration; Numerical error; Runge-Kutta; ode45; INTEGRATION; SYSTEMS; EQUATIONS; ACCURACY; MOTION;
D O I
10.1016/j.actaastro.2013.02.013
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The method of nearby problems has previously been applied to validate the accuracy of numerical solutions of the problems in fluid dynamics. In this paper, the application of this method is extended to the problems in orbital mechanics. Using this method, the error in the numerical simulations of two-body and three-body equations of motion is estimated. A fixed step-size and a variable step-size numerical integration scheme are used for the simulations. The method of nearby problems is found to provide reliable error estimates and has advantages of cost efficiency and ease of use. (C) 2013 IAA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:74 / 88
页数:15
相关论文
共 50 条
  • [31] Numerical simulations of deep penetration problems using the material point method
    Lorenzo, R.
    da Cunha, Renato P.
    Cordao Neto, Manoel P.
    Nairn, John A.
    GEOMECHANICS AND ENGINEERING, 2016, 11 (01) : 59 - 76
  • [32] ENRICHED GOAL-ORIENTED ERROR ESTIMATION APPLIED TO FRACTURE MECHANICS PROBLEMS SOLVED BY XFEM
    Zhijia Lin Zhuo Zhuang 1 Xiaochuan You Heng Wang Dandan Xu (Applied Mechanics Lab.
    Acta Mechanica Solida Sinica, 2012, 25 (04) : 393 - 403
  • [33] Enriched Goal-Oriented Error Estimation Applied to Fracture Mechanics Problems Solved by XFEM
    Zhijia Lin
    Zhuo Zhuang
    Xiaochuan You
    Heng Wang
    Dandan Xu
    Acta Mechanica Solida Sinica, 2012, 25 : 393 - 403
  • [34] Improved Method for Solving Aerodynamic Problems Using Numerical and Computational Simulations
    Kyung, Richard
    Song, Jae Hyuk
    Wu, Remy
    2018 9TH IEEE ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2018, : 408 - 411
  • [35] Numerical simulations of fracture problems by coupling the FEM and the direct method of lines
    Bao, WZ
    Han, HD
    Huang, ZY
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (37-38) : 4831 - 4846
  • [36] RESIDUAL A POSTERIORI ERROR ESTIMATION FOR THE VIRTUAL ELEMENT METHOD FOR ELLIPTIC PROBLEMS
    da Veiga, L. Beirao
    Manzini, G.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (02): : 577 - 599
  • [37] CONVERGENCE AND ERROR ESTIMATION IN NETWORK METHOD FOR NONLINEAR PROBLEMS OF MATHEMATICAL PHYSICS
    ABRASHIN, VN
    DOKLADY AKADEMII NAUK BELARUSI, 1973, 17 (11): : 984 - 987
  • [38] Numerical estimation of trap depth in polymeric materials using molecular orbital method
    Hayase, Y.
    Osada, T.
    Takada, T.
    Tanaka, Y.
    CEIDP: 2009 ANNUAL REPORT CONFERENCE ON ELECTRICAL INSULATION AND DIELECTRIC PHENOMENA, 2009, : 506 - 509
  • [39] A trigonometrically fitted Runge-Kutta method for the numerical solution of orbital problems
    Anastassi, ZA
    Simos, TE
    NEW ASTRONOMY, 2005, 10 (04) : 301 - 309
  • [40] A NUMERICAL-METHOD FOR SOLVING HILLS EQUATION IN PROBLEMS OF QUANTUM-MECHANICS
    LUKIN, VA
    PSHENICHNIKOV, VM
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1990, 30 (01): : 128 - 129