The method of nearby problems for estimation of numerical error in orbital-mechanics simulations

被引:0
|
作者
Jagat, Ashish [1 ]
Sinclair, Andrew J. [1 ]
机构
[1] Auburn Univ, Auburn, AL 36849 USA
关键词
Orbital mechanics; Numerical integration; Numerical error; Runge-Kutta; ode45; INTEGRATION; SYSTEMS; EQUATIONS; ACCURACY; MOTION;
D O I
10.1016/j.actaastro.2013.02.013
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The method of nearby problems has previously been applied to validate the accuracy of numerical solutions of the problems in fluid dynamics. In this paper, the application of this method is extended to the problems in orbital mechanics. Using this method, the error in the numerical simulations of two-body and three-body equations of motion is estimated. A fixed step-size and a variable step-size numerical integration scheme are used for the simulations. The method of nearby problems is found to provide reliable error estimates and has advantages of cost efficiency and ease of use. (C) 2013 IAA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:74 / 88
页数:15
相关论文
共 50 条
  • [1] CHARACTERIZATION OF NUMERICAL ERROR IN THE SIMULATION OF TRANSLUNAR TRAJECTORIES USING THE METHOD OF NEARBY PROBLEMS
    Jagat, Ashish A.
    Sinclair, Andrew J.
    SPACEFLIGHT MECHANICS 2011, PTS I-III, 2011, 140 : 2511 - +
  • [2] Estimation of discretization errors using the method of nearby problems
    Roy, Christopher J.
    Raju, Anil
    Hopkins, Matthew M.
    AIAA Journal, 2007, 45 (06): : 1232 - 1243
  • [3] Estimation of discretization errors using the method of nearby problems
    Roy, Christopher J.
    Raju, Anil
    Hopkins, Matthew M.
    AIAA JOURNAL, 2007, 45 (06) : 1232 - 1243
  • [4] ERROR PROPAGATION IN THE NUMERICAL-SOLUTIONS OF THE DIFFERENTIAL-EQUATIONS OF ORBITAL MECHANICS
    BOND, VR
    CELESTIAL MECHANICS, 1982, 27 (01): : 65 - 77
  • [5] Estimation of the spatial discretization error in numerical simulations of bubbly flows
    Avila, Vinicius da Costa
    Tessaro, Isabel Cristina
    Medeiros Cardozo, Nilo Sergio
    CHEMICAL ENGINEERING SCIENCE, 2021, 236
  • [6] Pseudospectral method for numerical solution of DAEs with an error estimation
    Hosseini, MM
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 170 (01) : 115 - 124
  • [7] Numerical simulations of cloaking problems using a DPG method
    Demkowicz, L.
    Li, Jichun
    COMPUTATIONAL MECHANICS, 2013, 51 (05) : 661 - 672
  • [8] Numerical simulations of cloaking problems using a DPG method
    L. Demkowicz
    Jichun Li
    Computational Mechanics, 2013, 51 : 661 - 672
  • [9] A numerical method for minimum distance estimation problems
    Cervellera, C.
    Maccio, D.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2011, 102 (04) : 789 - 800
  • [10] A Runge-Kutta Method by Using Phase-lag and Amplification Error Properties for the Numerical Solution of Orbital Problems
    Papadopoulos, D. F.
    Simos, T. E.
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1186 - 1189