Precision of a mammalian circadian clock

被引:0
|
作者
Sharma, VK
Chandrashekaran, MK
机构
[1] Indian Inst Sci, Jawaharlal Nehru Ctr Adv Sci Res, Chronobiol Lab, Bangalore 560064, Karnataka, India
[2] Indian Inst Sci, Jawaharlal Nehru Ctr Adv Sci Res, Organismal Biol Unit, Bangalore 560064, Karnataka, India
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper reports study of day-to-day instability in the locomotor activity rhythm of the nocturnal field mouse Mus booduga. The free-running period ( tau) of this rhythm was estimated in constant darkness in n=347 adult male mice. The "onset" and "offset" of locomotor activity rhythm were used as phase markers of the circadian clock. The precision of the onset of locomotor activity was observed to be a non-linear function of tau, with maximal precision at tau close to 24 h. The precision of the offset of locomotor activity was found to increase with increasing tau. These results suggest that the homeostasis of tau is tighter when tau is close to 24 h.
引用
收藏
页码:333 / 335
页数:3
相关论文
共 50 条
  • [41] Colour As a Signal for Entraining the Mammalian Circadian Clock
    Walmsley, Lauren
    Hanna, Lydia
    Mouland, Josh
    Martial, Franck
    West, Alexander
    Smedley, Andrew R.
    Bechtold, David A.
    Webb, Ann R.
    Lucas, Robert J.
    Brown, Timothy M.
    PLOS BIOLOGY, 2015, 13 (04)
  • [42] Posttranslational mechanisms regulate the mammalian circadian clock
    Lee, C
    Etchegaray, JP
    Cagampang, FRA
    Loudon, ASI
    Reppert, SM
    CELL, 2001, 107 (07) : 855 - 867
  • [43] A detailed predictive model of the mammalian circadian clock
    Forger, DB
    Peskin, CS
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (25) : 14806 - 14811
  • [44] Circadian clock mechanism driving mammalian photoperiodism
    Wood, S. H.
    Hindle, M. M.
    Mizoro, Y.
    Cheng, Y.
    Saer, B. R. C.
    Miedzinska, K.
    Christian, H. C.
    Begley, N.
    McNeilly, J.
    McNeilly, A. S.
    Meddle, S. L.
    Burt, D. W.
    Loudon, A. S. I.
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [45] Astrocytes in the mammalian circadian clock: Putative roles
    Serviere, J
    Lavialle, M
    HYPOTHALAMIC INTEGRATION OF CIRCADIAN RHYTHMS, 1996, 111 : 57 - 73
  • [46] Interacting molecular loops in the mammalian circadian clock
    Shearman, LP
    Sriram, S
    Weaver, DR
    Maywood, ES
    Chaves, I
    Zheng, BH
    Kume, K
    Lee, CC
    van der Horst, GTJ
    Hastings, MH
    Reppert, SM
    SCIENCE, 2000, 288 (5468) : 1013 - 1019
  • [47] A POSSIBLE GLIAL ROLE IN THE MAMMALIAN CIRCADIAN CLOCK
    PROSSER, RA
    EDGAR, DM
    HELLER, HC
    MILLER, JD
    BRAIN RESEARCH, 1994, 643 (1-2) : 296 - 301
  • [48] Daily Electrical Silencing in the Mammalian Circadian Clock
    Belle, Mino D. C.
    Diekman, Casey O.
    Forger, Daniel B.
    Piggins, Hugh D.
    SCIENCE, 2009, 326 (5950) : 281 - 284
  • [49] The mammalian circadian clock: A network of gene expression
    Albrecht, U
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2004, 9 : 48 - 55
  • [50] Light and the regulation of mammalian circadian clock genes
    Hastings, MH
    King, VM
    Maywood, ES
    BIOLOGIC EFFECTS OF LIGHT 2001, 2002, : 411 - 425