Berry phase and the phase of the Shubnikov-de Haas oscillations in three-dimensional topological insulators

被引:39
|
作者
Mikitik, G. P. [1 ]
Sharlai, Yu. V. [1 ]
机构
[1] Ukrainian Acad Sci, B Verkin Inst Low Temp Phys & Engn, UA-61103 Kharkov, Ukraine
关键词
SINGLE DIRAC CONE; SURFACE-STATES;
D O I
10.1103/PhysRevB.85.033301
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Within the semiclassical approach, we calculate contributions of the Berry phase and of the Zeeman coupling of an electron moment with the magnetic field to the phase of the Shubnikov-de Haas oscillations for the surface electrons in the Bi2X3 family of three-dimensional topological insulators (X stands for Te or Se). We also discuss a relation of the obtained results with published experimental data on the Shubnikov-de Haas oscillations for this family of topological insulators.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Shubnikov-de Haas oscillations in a nonplanar two-dimensional electron gas
    Gusev, GM
    Quivy, AA
    Leite, JR
    Bykov, AA
    Moshegov, NT
    Kudryashev, VM
    Toropov, AI
    Nastaushev, YV
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1999, 14 (12) : 1114 - 1118
  • [22] Shubnikov-de Haas and Hall quantum oscillations in graphite
    Stamenov, P
    Krstic, V
    Coey, JMD
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2005, 290 : 1402 - 1404
  • [23] Shubnikov-de Haas oscillations in a nonplanar two-dimensional electron gas
    Instituto de Fisica, Universidad de São Paulo, CP 66318, CEP 05315-970, São Paulo, SP, Brazil
    不详
    Semicond Sci Technol, 12 (1114-1118):
  • [24] Investigation of Angle-Dependent Shubnikov-de Haas Oscillations in Topological Insulator Bismuth
    Karn, Navneet Kumar
    Kumar, Yogesh
    Awana, Geet
    Awana, Veer Pal Singh
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2024,
  • [25] Optical Shubnikov-de Haas oscillations in two-dimensional electron systems
    Savchenko, M. L.
    Gospodaric, J.
    Shuvaev, A.
    Dmitriev, I. A.
    Dziom, V.
    Dobretsova, A. A.
    Mikhailov, N. N.
    Kvon, Z. D.
    Pimenov, A.
    PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [26] Shubnikov-de Haas Oscillations in the Magnetoresistance of Layered Conductors in Proximity to the Topological Lifshitz Transition
    Peschansky, V. G.
    Kartsovnik, M. V.
    Fust, S.
    LOW TEMPERATURE PHYSICS, 2018, 44 (08) : 791 - 796
  • [27] Shubnikov-de Haas oscillations and nontrivial topological states in Weyl semimetal candidate SmAlSi
    Xu, Longmeng
    Niu, Haoyu
    Bai, Yuming
    Zhu, Haipeng
    Yuan, Songliu
    He, Xiong
    Han, Yibo
    Zhao, Lingxiao
    Yang, Yang
    Xia, Zhengcai
    Liang, Qifeng
    Tian, Zhaoming
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (48)
  • [28] Shubnikov-de Haas oscillations in topological crystalline insulator SnTe(111) epitaxial films
    Okazaki, A. K.
    Wiedmann, S.
    Pezzini, S.
    Peres, M. L.
    Rappl, P. H. O.
    Abramof, E.
    PHYSICAL REVIEW B, 2018, 98 (19)
  • [29] Resistivity, Hall effect, and Shubnikov-de Haas oscillations in CeNiSn
    Terashima, T
    Terakura, C
    Uji, S
    Aoki, H
    Echizen, Y
    Takabatake, T
    PHYSICAL REVIEW B, 2002, 66 (07):
  • [30] Extreme magnetoresistance and Shubnikov-de Haas oscillations in ferromagnetic DySb
    Liang, D. D.
    Wang, Y. J.
    Xi, C. Y.
    Zhen, W. L.
    Yang, J.
    Pi, L.
    Zhu, W. K.
    Zhang, C. J.
    APL MATERIALS, 2018, 6 (08):