On 3-dimensional Kenmotsu manifolds

被引:0
|
作者
De, UC [1 ]
Pathak, G [1 ]
机构
[1] Univ Kalyani, Dept Math, Kalyani 741235, W Bengal, India
来源
关键词
Kenmotsu manifold; locally phi-symmetric; eta-parallel Ricci tensor; manifold of constant negative curvature;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The object of the present paper is to study a 3-dimensional Kenmotsu manifold satisfying certain curvature conditions. Among other it is proved that a 3-dimensional Kenmotsu manifold with eta-parallel Ricci tensor is of constant scalar curvature and a 3-dimensional Kenmotsu manifold satisfying cyclic Ricci tensor is a manifold of constant negative curvature-1.
引用
收藏
页码:159 / 165
页数:7
相关论文
共 50 条
  • [41] Theorem of hyperbolization for 3-dimensional fibered manifolds
    Otal, JP
    ASTERISQUE, 1996, (235) : R1 - &
  • [42] On the classification of 3-dimensional spherical Sasakian manifolds
    Sykes, D.
    Schmalz, G.
    Ezhov, V. V.
    IZVESTIYA MATHEMATICS, 2021, 85 (03) : 518 - 528
  • [43] GROUPS OF AUTOMORPHISMS OF 3-DIMENSIONAL HYPERBOLIC MANIFOLDS
    MEDNYKH, AD
    DOKLADY AKADEMII NAUK SSSR, 1985, 285 (01): : 40 - 44
  • [44] COMPLEXIFICATION OF CONTACT STRUCTURES ON 3-DIMENSIONAL MANIFOLDS
    ELIASHBERG, YM
    RUSSIAN MATHEMATICAL SURVEYS, 1985, 40 (06) : 123 - 124
  • [45] 3-DIMENSIONAL LINE MANIFOLDS WITH A SYMMETRIC MATRIX
    SOLIMAN, MA
    ABDELALL, NH
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1982, 13 (03): : 329 - 333
  • [46] A new invariant on 3-dimensional manifolds and applications
    Ge, Yuxin
    Li, Mingxiang
    Lian, Zhao
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2024,
  • [47] A new conformal invariant on 3-dimensional manifolds
    Ge, Yuxin
    Wang, Guofang
    ADVANCES IN MATHEMATICS, 2013, 249 : 131 - 160
  • [48] Ruled Surfaces in 3-Dimensional Riemannian Manifolds
    Lopez, Marco Castrillon
    Rosado, M. Eugenia
    Soria, Alberto
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (03)
  • [49] Quantum periods for 3-dimensional Fano manifolds
    Coates, Tom
    Corti, Alessio
    Galkin, Sergey
    Kasprzyk, Alexander
    GEOMETRY & TOPOLOGY, 2016, 20 (01) : 103 - 256
  • [50] Embeddings for 3-dimensional CR-manifolds
    Epstein, CL
    Henkin, GM
    COMPLEX ANALYSIS AND GEOMETRY, 2000, 188 : 223 - 236