On 3-dimensional Kenmotsu manifolds

被引:0
|
作者
De, UC [1 ]
Pathak, G [1 ]
机构
[1] Univ Kalyani, Dept Math, Kalyani 741235, W Bengal, India
来源
关键词
Kenmotsu manifold; locally phi-symmetric; eta-parallel Ricci tensor; manifold of constant negative curvature;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The object of the present paper is to study a 3-dimensional Kenmotsu manifold satisfying certain curvature conditions. Among other it is proved that a 3-dimensional Kenmotsu manifold with eta-parallel Ricci tensor is of constant scalar curvature and a 3-dimensional Kenmotsu manifold satisfying cyclic Ricci tensor is a manifold of constant negative curvature-1.
引用
收藏
页码:159 / 165
页数:7
相关论文
共 50 条
  • [1] 3-Dimensional f-Kenmotsu manifolds and solitons
    Sardar, Arpan
    De Chand, Uday
    Najafi, Behzad
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2022, 19 (13)
  • [2] On 3-dimensional f-Kenmotsu manifolds and Ricci solitons
    Yildiz, A.
    De, U. C.
    Turan, M.
    UKRAINIAN MATHEMATICAL JOURNAL, 2013, 65 (05) : 684 - 693
  • [3] Ricci curvature properties and stability on 3-dimensional Kenmotsu manifolds
    Voicu, R. C.
    HARMONIC MAPS AND DIFFERENTIAL GEOMETRY, 2011, 542 : 273 - 278
  • [4] On 3-dimensional f-Kenmotsu manifolds and Ricci solitons
    A. Yildiz
    U. C. De
    M. Turan
    Ukrainian Mathematical Journal, 2013, 65 : 684 - 693
  • [5] RICCI ρ-SOLITONS ON 3-DIMENSIONAL η-EINSTEIN ALMOST KENMOTSU MANIFOLDS
    Azami, Shahroud
    Fasihi-Ramandi, Ghodratallah
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (02): : 613 - 623
  • [6] A class of 3-dimensional almost Kenmotsu manifolds with harmonic curvature tensors
    Wang, Yaning
    OPEN MATHEMATICS, 2016, 14 : 977 - 985
  • [7] Legendre Curves on 3-Dimensional Kenmotsu Manifolds Admitting Semisymmetric Metric Connection
    Tang, Wanxiao
    Majhi, Pradip
    Zhao, Peibiao
    De, Uday Chand
    FILOMAT, 2018, 32 (10) : 3651 - 3656
  • [8] A Note on Yamabe Solitons on 3-dimensional Almost Kenmotsu Manifolds with Qφ = φQ
    Ghosh, Gopal
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2023, 16 (01): : 196 - 200
  • [9] eta-Ricci Soliton on 3-Dimensional f-Kenmotsu Manifolds
    Hui, S. K.
    Yadav, S. K.
    Chaubey, S. K.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2018, 13 (02): : 933 - 951
  • [10] THE MATHEMATICS OF 3-DIMENSIONAL MANIFOLDS
    THURSTON, WP
    WEEKS, JR
    SCIENTIFIC AMERICAN, 1984, 251 (01) : 108 - 120