Linear versus lattice embeddings between Banach lattices

被引:0
|
作者
Aviles, Antonio [1 ]
Martinez-Cervantes, Gonzalo [2 ]
Rueda Zoca, Abraham [1 ]
Tradacete, Pedro [3 ]
机构
[1] Univ Murcia, Dept Matemat, Campus Espinardo, E-30100 Murcia, Spain
[2] Univ Alicante, Fac Ciencias, Dept Matemat, E-03080 Alicante, Spain
[3] UAM, CSIC, Inst Ciencias Matemat CSIC UAM UC3M UCM, C Nicolas Cabrera 13-15,Campus Cantoblanco, Madrid 28049, Spain
关键词
Banach lattice; Linear embedding; Lattice embedding; AM-space; C[0,1; POSITIVE EMBEDDINGS; RADON MEASURES; SPACES;
D O I
10.1016/j.aim.2022.108574
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A well-known classical result states that c0 is linearly embeddable in a Banach lattice if and only if it is lattice embeddable. Improving results of H.P. Lotz, H.P. Rosenthal and N. Ghoussoub, we prove that C[0, 1] shares this property with c0. Furthermore, we show that any infinite-dimensional closed sublattice of C[0, 1] is either lattice isomorphic to c0 or contains a closed sublattice isomorphic to C[0, 1]. As a consequence, it is proved that for a separable Banach lattice X the following conditions are equivalent: (1) X is linearly embeddable in a Banach lattice if and only if it is lattice embeddable; (2) X is lattice embeddable into C[0, 1]. (C) 2022 The Authors. Published by Elsevier Inc.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] LATTICE EMBEDDINGS IN FREE BANACH LATTICES OVER LATTICES
    Aviles, Antonio
    Martinez-Cervantes, Gonzalo
    Rodriguez Abellan, Jose David
    Rueda Zoca, Abraham
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2022, 25 (02): : 495 - 509
  • [2] On strictly singular and strictly cosingular embeddings between Banach lattices of functions
    Cobos, F
    Pustylnik, E
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2002, 133 : 183 - 190
  • [3] Embeddings of Banach Spaces Into Banach Lattices and the Gordon–Lewis Property
    P.G. Casazza
    N.J. Nielsen
    [J]. Positivity, 2001, 5 : 297 - 321
  • [4] REMARKS ON NON-LINEAR EMBEDDINGS BETWEEN BANACH SPACES
    Godefroy, Gilles
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2010, 36 (01): : 283 - 287
  • [5] Embeddings of Banach spaces into Banach lattices and the Gordon-Lewis property
    Casazza, PG
    Nielsen, NJ
    [J]. POSITIVITY, 2001, 5 (04) : 297 - 321
  • [6] SPECTRUM OF LATTICE HOMOMORPHISMS IN BANACH LATTICES
    WOLFF, M
    [J]. MATHEMATISCHE ANNALEN, 1969, 184 (01) : 49 - &
  • [7] Banach lattices of continuous Banach lattice-valued functions
    Ercan, Z
    Wickstead, AW
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 198 (01) : 121 - 136
  • [8] FREE BANACH LATTICES GENERATED BY A LATTICE AND PROJECTIVITY
    Aviles, Antonio
    Martinez-Cervantes, Gonzalo
    Rodriguez Abellan, Jose David
    Rueda Zoca, Abraham
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (05) : 2071 - 2082
  • [9] A characterization of positively decomposable non-linear maps between Banach lattices
    William A. Feldman
    Pramod Singh
    [J]. Positivity, 2008, 12 : 495 - 502
  • [10] A characterization of positively decomposable non-linear maps between Banach lattices
    Feldman, William A.
    Singh, Pramod
    [J]. POSITIVITY, 2008, 12 (03) : 495 - 502