A characterization of positively decomposable non-linear maps between Banach lattices

被引:0
|
作者
William A. Feldman
Pramod Singh
机构
[1] University of Arkansas,Department of Mathematical Sciences
[2] Hewlett Packard,undefined
来源
Positivity | 2008年 / 12卷
关键词
46B42; 47H07; Decomposable; disjointness preserving; non-linear operators; Carleman operators; approximate-atoms;
D O I
暂无
中图分类号
学科分类号
摘要
A map between Banach lattices E and F is called positively decomposable if Tf = g1 + g2 for f, g1, g2 positive and g1 and g2 disjoint implies there exist disjoint positive elements f1 and f2 each less than f with the property that Tf1 = g1 and Tf2 = g2. Recently, the positive decomposability of linear Carleman operators on Banach lattices were characterized using disjointness condition of images of the approximate atoms. This note provides an extension of the characterization for a class of non-linear maps. Further, disjointness preserving maps are studied.
引用
收藏
页码:495 / 502
页数:7
相关论文
共 50 条
  • [1] A characterization of positively decomposable non-linear maps between Banach lattices
    Feldman, William A.
    Singh, Pramod
    [J]. POSITIVITY, 2008, 12 (03) : 495 - 502
  • [2] A characterization of relatively decomposable Banach lattices
    Cwikel, M
    Nilsson, PG
    Schechtman, G
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 165 (787) : 106 - 127
  • [3] REMARKS ON NON-LINEAR EMBEDDINGS BETWEEN BANACH SPACES
    Godefroy, Gilles
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2010, 36 (01): : 283 - 287
  • [4] A characterization of non-linear maps satisfying orthogonality properties
    Feldman, William
    [J]. POSITIVITY, 2017, 21 (01) : 85 - 97
  • [5] A characterization of non-linear maps satisfying orthogonality properties
    William Feldman
    [J]. Positivity, 2017, 21 : 85 - 97
  • [6] Non-linear positive maps between C*-algebras
    Dadkhah, Ali
    Moslehian, Mohammad Sal
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (08): : 1501 - 1517
  • [7] ON LINEAR AND EXPONENTIAL TYPE NON-LINEAR LATTICES
    YAMAZAKI, S
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (06): : 1425 - 1429
  • [8] PEIERLS INSTABILITY IN NON-LINEAR LATTICES
    WEBER, S
    BUTTNER, H
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1983, 16 (20): : L693 - L698
  • [9] Analysis of Lattices with Non-linear Interphases
    S. Haq
    A. B. Movchan
    G. J. Rodin
    [J]. Acta Mechanica Sinica, 2006, 22 : 323 - 330
  • [10] Analysis of lattices with non-linear interphases
    Haq, S.
    Movehan, A. B.
    Rodin, G. J.
    [J]. ACTA MECHANICA SINICA, 2006, 22 (04) : 323 - 330