RENORMALIZATION, FREEZING PHASE TRANSITIONS AND FIBONACCI QUASICRYSTALS

被引:0
|
作者
Bruin, Henk [1 ]
Leplaideur, Renaud [2 ]
机构
[1] Univ Vienna, Fac Math, A-1090 Vienna, Austria
[2] Univ Brest, LMBA, UMR CNRS 6205, CS 93837, F-29200 Brest, France
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We examine the renormalization operator determined by the Fibonacci substitution within the full shift on two symbols Sigma := {0, 1}(N). We exhibit a fixed point and determine its stable leaf (under iteration of the operator acting on potentials V : E -> R), which is completely determined by the germ near the attractor of the substitution. Then we study the thermodynamic formalism for potentials in this stable leaf, and prove they have a freezing phase transition at finite temperature, with ground state supported on the attracting quasi-crystal associated to the Fibonacci substitution.
引用
收藏
页码:739 / 763
页数:25
相关论文
共 50 条
  • [21] Light-pulse propagation in Fibonacci quasicrystals
    Ghulinyan, M
    Oton, CJ
    Dal Negro, L
    Pavesi, L
    Sapienza, R
    Colocci, M
    Wiersma, DS
    PHYSICAL REVIEW B, 2005, 71 (09)
  • [22] Omnidirectional reflection from generalized Fibonacci quasicrystals
    Barriuso, Alberto G.
    Monzon, Juan J.
    Yonte, Teresa
    Felipe, Angel
    Sanchez-Soto, Luis L.
    OPTICS EXPRESS, 2013, 21 (24): : 30039 - 30053
  • [23] Higher-order topology in Fibonacci quasicrystals
    Ouyang, Chaozhi
    He, Qinghua
    Xu, Dong-Hui
    Liu, Feng
    PHYSICAL REVIEW B, 2024, 110 (07)
  • [24] Physical nature of critical modes in Fibonacci quasicrystals
    Maciá, E
    PHYSICAL REVIEW B, 1999, 60 (14): : 10032 - 10036
  • [25] The spectrum of eigenvalues in the renormalization group theory of phase transitions
    Swendsen, RH
    COMPUTER SIMULATION STUDIES IN CONDENSED-MATTER PHYSICS XIV, 2002, 89 : 102 - 110
  • [26] Entanglement, Quantum Phase Transitions, and Density Matrix Renormalization
    Osborne, Tobias J.
    Nielsen, Michael A.
    QUANTUM INFORMATION PROCESSING, 2002, 1 (1-2) : 45 - 53
  • [27] Entanglement, Quantum Phase Transitions, and Density Matrix Renormalization
    Tobias J. Osborne
    Michael A. Nielsen
    Quantum Information Processing, 2002, 1 : 45 - 53
  • [28] Phase transitions and renormalization group: From theory to numbers
    Zinn-Justin, J
    POINCARE SEMINAR 2002: VACUUM ENERGY - RENORMALIZATION, 2003, 30 : 213 - 239
  • [29] Functional renormalization for quantum phase transitions with nonrelativistic bosons
    Wetterich, C.
    PHYSICAL REVIEW B, 2008, 77 (06)
  • [30] Curvature function renormalization, topological phase transitions, and multicriticality
    Abdulla, Faruk
    Mohan, Priyanka
    Rao, Sumathi
    PHYSICAL REVIEW B, 2020, 102 (23)