No-reference quality assessment of H.264/AVC encoded video based on natural scene features

被引:11
|
作者
Zhu, Kongfeng [1 ,2 ]
Asari, Vijayan [2 ]
Saupe, Dietmar [1 ]
机构
[1] Univ Konstanz, Dept Comp & Informat Sci, Constance, Germany
[2] Univ Dayton, Dept Elect & Comp Engn, Dayton, OH 45469 USA
关键词
Video quality assessment; no-reference; H.264/AVC; natural scenes; DCT; blockiness; IMAGE STATISTICS;
D O I
10.1117/12.2015594
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
H.264/AVC coded video quality is crucial for evaluating the performance of consumer-level video camcorders and mobile phones. In this paper, a DCT-based video quality prediction model (DVQPM) is proposed to blindly predict the quality of compressed natural videos. The model is frame-based and composed of three steps. First, each decoded frame of the video sequence is decomposed into six feature maps based on the DCT coefficients. Then five efficient frame-level features (kurtosis, smoothness, sharpness, mean Jensen Shannon divergence, and blockiness) are extracted to quantify the distortion of natural scenes due to lossy compression. In the last step, each frame-level feature is averaged across all frames (temporal pooling); a trained multilayer neural network takes the five features as inputs and outputs a single number as the predicted video quality. The DVQPM model was trained and tested on the H. 264 videos in the LIVE Video Database. Results show that the objective assessment of the proposed model has a strong correlation with the subjective assessment.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Content based video quality estimation for H.264/AVC video streaming
    Ries, Michal
    Crespi, Catalina
    Nemethova, Olivia
    Rupp, Markus
    [J]. 2007 IEEE WIRELESS COMMUNICATIONS & NETWORKING CONFERENCE, VOLS 1-9, 2007, : 2670 - 2675
  • [32] No-Reference H.264/AVC Statistical Multiplexing for DVB-RCS
    Aliabad, Hamed Ahmadi
    Moiron, Sandro
    Fleury, Martin
    Ghanbari, Mohammed
    [J]. PERSONAL SATELLITE SERVICES, 2010, 43 : 163 - 178
  • [33] Constructing a No-Reference H.264/AVC Bitstream-based Video Quality Metric Using Genetic Programming-based Symbolic Regression
    Staelens, Nicolas
    Deschrijver, Dirk
    Vladislavleva, Ekaterina
    Vermeulen, Brecht
    Dhaene, Tom
    Demeester, Piet
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2013, 23 (08) : 1322 - 1333
  • [34] Quality scalability in H.264/AVC video coding
    Limnell, VP
    Tian, D
    Hannuksela, MM
    Gabbouj, M
    [J]. Visual Communications and Image Processing 2005, Pts 1-4, 2005, 5960 : 559 - 567
  • [35] Subjective Quality Assessment of H.264/AVC Video Streaming with Packet Losses
    Francesca De Simone
    Matteo Naccari
    Marco Tagliasacchi
    Frederic Dufaux
    Stefano Tubaro
    Touradj Ebrahimi (EURASIP Member)
    [J]. EURASIP Journal on Image and Video Processing, 2011
  • [36] Subjective Quality Assessment of H.264/AVC Video Streaming with Packet Losses
    De Simone, Francesca
    Naccari, Matteo
    Tagliasacchi, Marco
    Dufaux, Frederic
    Tubaro, Stefano
    Ebrahimi, Touradj
    [J]. EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2011,
  • [37] No-Reference Algorithms for Video Quality Assessment based on Artifact Evaluation in MPEG-2 and H.264 Encoding Standards
    Lopez, J. P.
    Jimenez, D.
    Cerezo, A.
    Menendez, J. M.
    [J]. 2013 IFIP/IEEE INTERNATIONAL SYMPOSIUM ON INTEGRATED NETWORK MANAGEMENT (IM 2013), 2013, : 1336 - 1339
  • [38] No-Reference Video Quality Assessment Using Natural Spatiotemporal Scene Statistics
    Dendi, Sathya Veera Reddy
    Channappayya, Sumohana S.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 5612 - 5624
  • [39] A Perceptual Measure of Blocking Artifact for No-reference Video Quality Evaluation of H.264 Codec
    Ben Amor, Mohamed
    Larabi, Mohamed-Chaker
    Kammoun, Fahmi
    Masmoudi, Nouri
    [J]. JOURNAL OF TESTING AND EVALUATION, 2015, 43 (06) : 1247 - 1257
  • [40] PERCEPTUAL QUALITY ASSESSMENT FOR H.264/AVC COMPRESSION
    Romaniak, Piotr
    Janowski, Lucjan
    Leszczuk, Mikolaj
    Papir, Zdzislaw
    [J]. 2012 IEEE CONSUMER COMMUNICATIONS AND NETWORKING CONFERENCE (CCNC), 2012, : 597 - 602