Upper bounds for adjacent vertex-distinguishing edge coloring

被引:2
|
作者
Zhu, Junlei [1 ,2 ]
Bu, Yuehua [1 ,3 ]
Dai, Yun [1 ]
机构
[1] Zhejiang Normal Univ, Coll Math Phys & Informat Engn, Jinhua 321004, Peoples R China
[2] Jiaxing Univ, Coll Math Phys & Informat Engn, Jiaxing 314001, Peoples R China
[3] Zhejiang Normal Univ, Xingzhi Coll, Jinhua 321004, Peoples R China
关键词
Proper edge coloring; Adjacent vertex-distinguishing edge coloring; Lovasz local lemma; NEIGHBOR-DISTINGUISHING INDEX; PLANAR GRAPHS; SUM;
D O I
10.1007/s10878-017-0187-0
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An adjacent vertex-distinguishing edge coloring of a graph is a proper edge coloring such that no pair of adjacent vertices meets the same set of colors. The adjacent vertex-distinguishing edge chromatic number is the minimum number of colors required for an adjacent vertex-distinguishing edge coloring, denoted as . In this paper, we prove that for a connected graph G with maximum degree , , which proves the previous upper bound. We also prove that for a graph G with maximum degree and minimum degree , .
引用
收藏
页码:454 / 462
页数:9
相关论文
共 50 条
  • [1] Upper bounds for adjacent vertex-distinguishing edge coloring
    Junlei Zhu
    Yuehua Bu
    Yun Dai
    Journal of Combinatorial Optimization, 2018, 35 : 454 - 462
  • [2] On the adjacent vertex-distinguishing equitable edge coloring of graphs
    Jing-wen Li
    Cong Wang
    Zhi-wen Wang
    Acta Mathematicae Applicatae Sinica, English Series, 2013, 29 : 615 - 622
  • [3] On the Adjacent Vertex-distinguishing Equitable Edge Coloring of Graphs
    Li, Jing-wen
    Wang, Cong
    Wang, Zhi-wen
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (03): : 615 - 622
  • [4] On the Adjacent Vertex-distinguishing Equitable Edge Coloring of Graphs
    Jing-wen LI
    Cong WANG
    Zhi-wen WANG
    Acta Mathematicae Applicatae Sinica, 2013, (03) : 615 - 622
  • [5] On the Adjacent Vertex-distinguishing Equitable Edge Coloring of Graphs
    Jingwen LI
    Cong WANG
    Zhiwen WANG
    Acta Mathematicae Applicatae Sinica(English Series), 2013, 29 (03) : 615 - 622
  • [6] On the adjacent vertex-distinguishing acyclic edge coloring of some graphs
    SHIU Wai Chee
    Applied Mathematics:A Journal of Chinese Universities, 2011, (04) : 439 - 452
  • [7] Adjacent vertex-distinguishing edge coloring of graphs with maximum degree Δ
    Hocquard, Herve
    Montassier, Mickael
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 26 (01) : 152 - 160
  • [8] Adjacent vertex-distinguishing edge coloring of graphs with maximum degree Δ
    Hervé Hocquard
    Mickaël Montassier
    Journal of Combinatorial Optimization, 2013, 26 : 152 - 160
  • [9] On the adjacent vertex-distinguishing acyclic edge coloring of some graphs
    Shiu Wai Chee
    Chan Wai Hong
    Zhang Zhong-fu
    Bian Liang
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2011, 26 (04) : 439 - 452
  • [10] On the adjacent vertex-distinguishing acyclic edge coloring of some graphs
    Wai Chee Shiu
    Wai Hong Chan
    Zhong-fu Zhang
    Liang Bian
    Applied Mathematics-A Journal of Chinese Universities, 2011, 26 : 439 - 452