First-principles prediction of a rising star of solar energy material: SrTcO3

被引:1
|
作者
Chen, Da [1 ]
Ma, Chun-Lan [1 ]
Chen, Gao-Yuan [1 ]
Dai, Cheng-Min [1 ]
Gu, Ling-Jun [1 ]
Ge, Li-Juan [1 ]
Ke, San-Huang [2 ,3 ]
Wu, Rong [4 ]
机构
[1] Suzhou Univ Sci & Technol, Sch Math & Phys, Suzhou 215009, Peoples R China
[2] Tongji Univ, Sch Phys Sci & Engn, MOE Key Lab Microstruct Mat, 1239 Siping Rd, Shanghai 200092, Peoples R China
[3] Beijing Computat Sci Res Ctr, 10 Dongbeiwang West Rd, Beijing 100094, Peoples R China
[4] Xinjiang Univ, Dept Phys, Key Lab Solid State Phys & Devices, Urumqi 830046, Xinjiang, Peoples R China
来源
OPTICS EXPRESS | 2016年 / 24卷 / 26期
基金
中国国家自然科学基金;
关键词
PHOTOVOLTAIC APPLICATIONS;
D O I
10.1364/OE.24.0A1612
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
SrTcO3 as a new star of solar energy material is investigated in terms of its band gap evolution with biaxial strain from first-principles calculations. Compared to the theoretical equilibrium lattice constant a(b) of bulk SrTcO3, a set of lattice constants with a deviation of -8.75% to +3.35% are considered to include the strain effect. Since the in-plane lattice constant of SrTcO3 is larger than that of the commonly used substrate SrTiO3(STO)/La0.3Sr0.7Al0.35Ta0.35O9 (LSAT)/NdGaO3(NGO)/LaAlO3(LAO), we mainly focus on the modulation of compressive strain. It is found that the band gap decreases with increasing compressive/tensile strain. When the compressive strain reaches 8.75%, the band gap drops to zero and an insulator-metal phase transition appears. Particularly, upon a compressive strain of 1.3%/2.2%/2.4%/4.1%, which can be realized by growing SrTcO3 on substrate STO/LSAT/NGO/LAO, the band gap becomes 1.56/1.47/1.43/1.12 eV, which falls in the range for efficient solar cell materials. Our work suggests that SrTcO3 is a good candidate for a new solar energy material. (C) 2016 Optical Society of America
引用
收藏
页码:A1612 / A1617
页数:6
相关论文
共 50 条
  • [31] Interface Structure Prediction from First-Principles
    Zhao, Xin
    Shu, Qiang
    Manh Cuong Nguyen
    Wang, Yangang
    Ji, Min
    Xiang, Hongjun
    Ho, Kai-Ming
    Gong, Xingao
    Wang, Cai-Zhuang
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (18): : 9524 - 9530
  • [32] First-principles study on the material properties of the inorganic perovskite Rb1-xCsxPbI3 for solar cell applications
    Jong, Un-Gi
    Yu, Chol-Jun
    Kim, Yun-Sim
    Kye, Yun-Hyok
    Kim, Chol-Ho
    PHYSICAL REVIEW B, 2018, 98 (12)
  • [33] Hex-star phosphorene nanosheets as sequencing material for DNA/RNA strands - A first-principles investigation
    Nagarajan, V.
    Reseeka, N.
    Chandiramouli, R.
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2024, 132
  • [34] First-principles study on bilayer SnP3 as a promising thermoelectric material
    Song, Hongyue
    Zhang, Xuehua
    Yuan, Peiling
    Hu, Wencheng
    Gao, Zhibin
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (48) : 29693 - 29699
  • [35] First-principles Prediction for Mechanical and Optical Properties of Al3BC3
    Qiu Ping-Yi
    CHINESE PHYSICS LETTERS, 2014, 31 (06)
  • [36] A first-principles approach to half-Heusler thermoelectrics: Accelerated prediction and understanding of material properties
    Page, Alexander
    Poudeu, P. F. P.
    Uher, Ctirad
    JOURNAL OF MATERIOMICS, 2016, 2 (02) : 104 - 113
  • [37] Delafossite NaYTe2 as a transparent conductive material with bipolar conductivity: A first-principles prediction
    Zhang, Xiaotian
    Lin, Changqing
    Guo, Xinyi
    Xue, Yang
    Liang, Xianqing
    Zhou, Wenzheng
    Persson, Clas
    Huang, Dan
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2024, 190
  • [38] Puckered Arsenene: A Promising Room-Temperature Thermoelectric Material from First-Principles Prediction
    Sun, Yajing
    Wang, Dong
    Shuai, Zhigang
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (35): : 19080 - 19086
  • [39] ABINIT: First-principles approach to material and nanosystem properties
    Gonze, X.
    Amadon, B.
    Anglade, P. -M.
    Beuken, J. -M.
    Bottin, F.
    Boulanger, P.
    Bruneval, F.
    Caliste, D.
    Caracas, R.
    Cote, M.
    Deutsch, T.
    Genovese, L.
    Ghosez, Ph.
    Giantomassi, M.
    Goedecker, S.
    Hamann, D. R.
    Hermet, P.
    Jollet, F.
    Jomard, G.
    Leroux, S.
    Mancini, M.
    Mazevet, S.
    Oliveira, M. J. T.
    Onida, G.
    Pouillon, Y.
    Rangel, T.
    Rignanese, G. -M.
    Sangalli, D.
    Shaltaf, R.
    Torrent, M.
    Verstraete, M. J.
    Zerah, G.
    Zwanziger, J. W.
    COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (12) : 2582 - 2615
  • [40] First-principles study of a hydrogen storage material CaSi
    Ohba, N
    Aoki, M
    Noritake, T
    Miwa, K
    Towata, S
    PHYSICAL REVIEW B, 2005, 72 (07)