Comparison of morphogenetic networks of filamentous fungi and yeast

被引:84
|
作者
Wendland, J [1 ]
机构
[1] Univ Jena, Dept Microbiol, D-07745 Jena, Germany
[2] Univ Jena, Hans Knoll Inst, D-07745 Jena, Germany
关键词
morphogenesis; cell polarity; spore; germination; germ tube emergence; hyphal growth; GTP-binding protein; Rho module; nuclear division;
D O I
10.1006/fgbi.2001.1290
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Wendland, J. 2001. Comparison of morphogenetic networks of filamentous fungi and yeast. Fungal Genetics and Biology 34, 63-82. Fungi generally display either of two growth modes, yeast-like or filamentous, whereas dimorphic fungi, upon environmental stimuli, are able to switch between the yeast-like and the filamentous growth mode. Signal transduction pathways have been elucidated in the budding yeast Saccharomyces cerevisiae, establishing a morphogenetic network that links cell-cycle events with cellular morphogenesis. Recent molecular genetic studies in several filamentous fungal model systems revealed key components required for distinct steps from fungal spore germination to the maintenance of polar hyphal growth, mycelium formation, and nuclear division. This allows a mechanistic comparison of yeast-like and hyphal growth and the establishment of a core model morphogenetic network for filamentous growth including signaling via the cAMP pathway, Rho modules, and cell cycle kinases. Appreciating similarities between morphogenetic networks of the unicellular yeasts and the multicellular filamentous fungi will open new research directions, help in isolating the central network components, and ultimately pave the way to elucidate the central differences (of many) that distinguish, e.g., the growth mode of filamentous fungi from that of their yeast-like relatives, the role of cAMP signaling, and nuclear division. (C) 2001 Academic Press.
引用
收藏
页码:63 / 82
页数:20
相关论文
共 50 条
  • [31] The fitness of filamentous fungi
    Pringle, A
    Taylor, JW
    TRENDS IN MICROBIOLOGY, 2002, 10 (10) : 474 - 481
  • [32] PLASMOPTYSIS OF FILAMENTOUS FUNGI
    TALBURT, DE
    JOHNSON, GT
    MYCOLOGIA, 1965, 57 (04) : 660 - &
  • [33] Toxins of filamentous fungi
    Bhatnagar, D
    Yu, JJ
    Ehrlich, KC
    FUNGAL ALLERGY AND PATHOGENICITY, 2002, 81 : 167 - 206
  • [34] RESPIROMETRY OF FILAMENTOUS FUNGI
    BONITATI, JP
    ELLIOTT, WB
    MILES, PG
    AMERICAN JOURNAL OF BOTANY, 1966, 53 (6P2) : 625 - &
  • [35] Identification of filamentous fungi
    Ranque, S.
    Normand, A. C.
    Gautier, M.
    Cassagne, C.
    l'Ollivier, C.
    Hendrickx, M.
    Piarroux, R.
    MYCOSES, 2015, 58 : 21 - 21
  • [36] Proteomics of filamentous fungi
    Kim, Yonghyun
    Nandakumar, M. P.
    Marten, Mark R.
    TRENDS IN BIOTECHNOLOGY, 2007, 25 (09) : 395 - 400
  • [37] Centromeres of filamentous fungi
    Kristina M. Smith
    Jonathan M. Galazka
    Pallavi A. Phatale
    Lanelle R. Connolly
    Michael Freitag
    Chromosome Research, 2012, 20 : 635 - 656
  • [38] TRANSFORMATION OF FILAMENTOUS FUNGI
    HYNES, MJ
    EXPERIMENTAL MYCOLOGY, 1986, 10 (01): : 1 - 8
  • [39] BIODIVERSITY OF FILAMENTOUS AND YEAST FUNGI IN CITRUS AND GRAPE FRUITS AND JUICES IN ASSIUT AREA, EGYPT
    Moubasher, Abdel-Aal Hassan
    Abdel-Sater, Mohamed Ahmed
    Soliman, Zeinab
    JOURNAL OF MICROBIOLOGY BIOTECHNOLOGY AND FOOD SCIENCES, 2018, 7 (04): : 353 - 365
  • [40] Autophagy in filamentous fungi
    Pollack, Judith K.
    Harris, Steven D.
    Marten, Mark R.
    FUNGAL GENETICS AND BIOLOGY, 2009, 46 (01) : 1 - 8