Model identification for hydrological forecasting under uncertainty

被引:251
|
作者
Wagener, T
Gupta, HV
机构
[1] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA
[2] Univ Arizona, SAHRA, Tucson, AZ 85721 USA
[3] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA
关键词
hydrological models; model identification; flood forecasting; uncertainty; data assimilation; model realism; predictions in ungauged basins;
D O I
10.1007/s00477-005-0006-5
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Methods for the identification of models for hydrological forecasting have to consider the specific nature of these models and the uncertainties present in the modeling process. Current approaches fail to fully incorporate these two aspects. In this paper we review the nature of hydrological models and the consequences of this nature for the task of model identification. We then continue to discuss the history ("The need for more POWER"), the current state ("Learning from other fields") and the future ("Towards a general framework") of model identification. The discussion closes with a list of desirable features for an identification framework under uncertainty and open research questions in need of answers before such a framework can be implemented.
引用
收藏
页码:378 / 387
页数:10
相关论文
共 50 条
  • [41] Improving a hydrological model by coupling it with an LSTM water use forecasting model
    Wu, Mengqi
    Liu, Pan
    Liu, Luguang
    Zou, Kaijie
    Luo, Xinran
    Wang, Jing
    Xia, Qian
    Wang, Hao
    JOURNAL OF HYDROLOGY, 2024, 636
  • [42] Nonparametric identification of the spatial autoregression model under a priori stochastic uncertainty
    Goryainov, V. B.
    Goryainova, E. R.
    AUTOMATION AND REMOTE CONTROL, 2010, 71 (02) : 198 - 208
  • [43] Nonparametric identification of the spatial autoregression model under a priori stochastic uncertainty
    V. B. Goryainov
    E. R. Goryainova
    Automation and Remote Control, 2010, 71 : 198 - 208
  • [44] MODEL-REFERENCE CONTROL AND IDENTIFICATION OF ROBOTIC MANIPULATORS UNDER UNCERTAINTY
    SKOWRONSKI, JM
    MATHEMATICAL MODELLING, 1987, 8 : 384 - 388
  • [45] Predictive Analysis and Simulation Uncertainty of a Distributed Hydrological Model
    Abdolreza Bahremand
    Florimond De Smedt
    Water Resources Management, 2010, 24 : 2869 - 2880
  • [46] Uncertainty in the outputs of a semi-distributed hydrological model
    Munoz, Enrique
    Gutierrez-Vejar, Juan C.
    Tume Zapata, Pedro, I
    TECNOLOGIA Y CIENCIAS DEL AGUA, 2018, 9 (02) : 150 - 174
  • [47] Effect of DEM uncertainty on the distributed hydrological model TOPMODEL
    Wang, Peifa
    Du, Jinkang
    Feng, Xuezhi
    Hu, Shunfu
    2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 1074 - +
  • [48] Predictive Analysis and Simulation Uncertainty of a Distributed Hydrological Model
    Bahremand, Abdolreza
    De Smedt, Florimond
    WATER RESOURCES MANAGEMENT, 2010, 24 (12) : 2869 - 2880
  • [49] Bayesian Uncertainty Analysis of the Distributed Hydrological Model HYDROTEL
    Bouda, Medard
    Rousseau, Alain N.
    Konan, Brou
    Gagnon, Patrick
    Gumiere, Silvio J.
    JOURNAL OF HYDROLOGIC ENGINEERING, 2012, 17 (09) : 1021 - 1032
  • [50] RECURSIVE ESTIMATION - A UNIFIED APPROACH TO THE IDENTIFICATION, ESTIMATION, AND FORECASTING OF HYDROLOGICAL SYSTEMS
    YOUNG, P
    WALLIS, S
    APPLIED MATHEMATICS AND COMPUTATION, 1985, 17 (04) : 299 - 334