Uniform continuity for all distance spaces

被引:0
|
作者
Castillo, P
DiCristina, G
Hajek, DW
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Univ Puerto Rico, Dept Math, Mayaguez, PR 00681 USA
关键词
uniform continuity; categories; bounded; zeroed distance spaces;
D O I
10.1016/S0166-8641(98)00105-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a definition of uniform continuity which applies to morphisms in the category DST of distance spaces, and which generalizes the definitions of uniform continuity which apply in the categories of metric spaces, of nearness spaces and of zeroed distance spaces. This definition allows us to define a category BDUNIF of d-bounded distance spaces and uniformly continuous functions (with this new definition of uniform continuity). TOP is embedded in BDUNIF as a bi-coreflective subcategory. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:61 / 66
页数:6
相关论文
共 50 条
  • [41] Strong uniform continuity
    Beer, Gerald
    Levi, Sandro
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 350 (02) : 568 - 589
  • [42] Uniform Continuity of POVMs
    Roberto Beneduci
    [J]. International Journal of Theoretical Physics, 2014, 53 : 3531 - 3545
  • [43] VISUALIZING UNIFORM CONTINUITY
    PAINE, D
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (01): : 44 - &
  • [44] CONTINUITY AND UNIFORM CONTINUITY OF SPECTRUM IN BANACH ALGEBRAS
    AUPETIT, B
    [J]. STUDIA MATHEMATICA, 1977, 61 (02) : 99 - 114
  • [45] Strong continuity implies uniform sequential continuity
    Bridges, D
    Ishihara, H
    Schuster, P
    Vîta, L
    [J]. ARCHIVE FOR MATHEMATICAL LOGIC, 2005, 44 (07) : 887 - 895
  • [46] Strong continuity implies uniform sequential continuity
    Douglas Bridges
    Hajime Ishihara
    Peter Schuster
    Luminiţa Vîţa
    [J]. Archive for Mathematical Logic, 2005, 44 : 887 - 895
  • [47] Distance domains: Continuity
    Bice, Tristan
    [J]. THEORETICAL COMPUTER SCIENCE, 2021, 869 : 85 - 107
  • [48] Non-uniform continuity of the Fokas-Olver-Rosenau-Qiao equation in Besov spaces
    Wu, Xing
    Yu, Yanghai
    [J]. MONATSHEFTE FUR MATHEMATIK, 2022, 197 (02): : 381 - 394
  • [49] Geometry of the Gromov-Hausdorff distance on the class of all metric spaces
    Borzov, Stanislav I.
    Ivanov, Alexandr O.
    Tuzhilin, Alexey A.
    [J]. SBORNIK MATHEMATICS, 2022, 213 (05) : 641 - 658
  • [50] Quantales and continuity spaces
    R.C. Flagg
    [J]. algebra universalis, 1997, 37 : 257 - 276