Steam Gasification of Refuse-Derived Fuel with CaO Modification for Hydrogen-Rich Syngas Production

被引:5
|
作者
Ren, Ranwei [1 ]
Wang, Haiming [1 ,2 ]
You, Changfu [1 ,2 ]
机构
[1] Tsinghua Univ, Dept Energy & Power Engn, Key Lab Thermal Sci & Power Engn, Minist Educ, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Shanxi Res Inst Clean Energy, Taiyuan 030032, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
RDF; steam gasification; H-2-rich syngas; CaO modification; system modeling; MUNICIPAL SOLID-WASTE; TEMPERATURE STEAM; RENEWABLE ENERGY; ASPEN PLUS; BIOMASS; MSW; INCINERATION; RECOVERY; PERFORMANCE; SIMULATION;
D O I
10.3390/en15218279
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Steam gasification of refuse-derived fuel (RDF) for hydrogen-rich syngas production was investigated in a lab-scale gasification system with CaO modification. A simulation model based on Aspen Plus was built to study the characteristics and the performance of the RDF gasification system. The influences of gasification temperature, steam to RDF ratio (S/R), and CaO adsorption temperature on the gas composition, heating value, and gas yield were evaluated. Under the gasification temperature of 960 degrees C and S/R of 1, H-2 frication in the syngas increased from 47 to 67% after CaO modification at 650 degrees C. Higher syngas and H-2 yield were obtained by increasing both S/R and gasification temperature. However, as the CaO adsorption temperature increased, a lower H-2 fraction was obtained due to the limitation of the CaO adsorption capacity at high temperatures. The highest H-2 fraction (69%), gas yield (1.372 m(3)/kg-RDF), and H-2 yield (0.935 m(3)/kg-RDF) were achieved at gasification temperature of 960 degrees C, S/R of 2, and CaO modification temperature of 650 degrees C. The variation trends of simulation results can match well with the experiment. The deviation was mainly because of the limitation of contact time between the gasification agent and RDF, uneven temperature distribution of the reactors, and the formation of tar during the experiment.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Purification of syngas from Refuse-Derived Fuel (RDF) gasification: Techno-economic analysis
    Haydary, Juma
    Rapcanova, Erika
    Skulec, Miroslav
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2023, 44
  • [22] Gasification of refuse derived fuel in a fixed bed reactor for syngas production
    Dalai, Ajay K.
    Batta, Nishant
    Eswaramoorthi, I.
    Schoenau, Greg J.
    WASTE MANAGEMENT, 2009, 29 (01) : 252 - 258
  • [23] Hydrogen-rich syngas production from biomass in a steam microwave-induced plasma gasification reactor
    Vecten, Simon
    Wilkinson, Michael
    Bimbo, Nuno
    Dawson, Richard
    Herbert, Ben M. J.
    BIORESOURCE TECHNOLOGY, 2021, 337
  • [24] Hydrogen-rich gas production by steam gasification of hydrochar derived from sewage sludge
    Gai, Chao
    Guo, Yanchuan
    Liu, Tingting
    Peng, Nana
    Liu, Zhengang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (05) : 3363 - 3372
  • [25] Steam Gasification of Biochar Derived from Fast Pyrolysis for Hydrogen-rich Gas Production
    Zeng, Wei-qiang
    Zhu, Ling-jun
    Wang, Qi
    ADVANCED RESEARCH ON MATERIAL ENGINEERING, CHEMISTRY, BIOINFORMATICS III, 2014, 830 : 477 - +
  • [26] Hydrogen-Rich Syngas Production by DC Thermal Plasma Steam Gasification from Biomass and Plastic Mixtures
    Ma, WenChao
    Chu, Chu
    Wang, Ping
    Guo, ZhenFei
    Lei, ShiJun
    Zhong, Lei
    Chen, GuanYi
    ADVANCED SUSTAINABLE SYSTEMS, 2020, 4 (10):
  • [27] Study on Chemical Looping Gasification of Biomass for Hydrogen-rich Syngas Production
    Wang, Panlei
    Xu, Zuwei
    Zhao, Haibo
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2024, 45 (12): : 3953 - 3961
  • [28] Recent Progress on Hydrogen-Rich Syngas Production from Coal Gasification
    Dai, Fei
    Zhang, Shengping
    Luo, Yuanpei
    Wang, Ke
    Liu, Yanrong
    Ji, Xiaoyan
    PROCESSES, 2023, 11 (06)
  • [29] Hydrogen-rich syngas production from pyrolysis and gasification of palmitic fibers
    Trabelsi, Aida Ben Hassen
    Jaouachi, Nidhal
    Naoui, Slim
    Kraiem, Takwa
    Zaafouri, Kaouther
    2015 6th International Renewable Energy Congress (IREC), 2015,
  • [30] Synergistic effect of torrefaction and gasification temperatures on hydrogen-rich syngas quality from steam gasification of cornstalk-derived biochar
    Dong, Nanhang
    Zhang, Zishan
    Wang, Jiacheng
    Wang, Xingshuai
    Yu, Yang
    Chen, Qicheng
    Sustainable Energy Technologies and Assessments, 2025, 73