Enzyme-catalyzed cationic epoxide rearrangements in quinolone alkaloid biosynthesis

被引:0
|
作者
Zou, Yi [1 ]
Garcia-Borras, Marc [2 ]
Tang, Mancheng C. [1 ]
Hirayama, Yuichiro [3 ]
Li, Dehai H. [4 ]
Li, Li [1 ]
Watanabe, Kenji [3 ]
Houk, K. N. [2 ]
Tang, Yi [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Chem & Biochem, 405 Hilgard Ave, Los Angeles, CA 90024 USA
[3] Univ Shizuoka, Dept Pharmaceut Sci, Shizuoka, Japan
[4] Ocean Univ China, Sch Med & Pharm, Key Lab Marine Drugs, Chinese Minist Educ, Qingdao, Peoples R China
基金
美国国家科学基金会; 日本学术振兴会;
关键词
ANTIBIOTICS; YAEQUINOLONES; CYCLOPROPANE; CONSTRUCTION; MYCORRHIZIN; MECHANISMS; CONVERSION; DISCOVERY;
D O I
10.1038/NCHEMBIO.2283
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Epoxides are highly useful synthons and biosynthons for the construction of complex natural products during total synthesis and biosynthesis, respectively. Among enzyme-catalyzed epoxide transformations, a reaction that is notably missing, in regard to the synthetic toolbox, is cationic rearrangement that takes place under strong acid. This is a challenging transformation for enzyme catalysis, as stabilization of the carbocation intermediate upon epoxide cleavage is required. Here, we discovered two Bronsted acid enzymes that can catalyze two unprecedented epoxide transformations in biology. PenF from the penigequinolone pathway catalyzes a cationic epoxide rearrangement under physiological conditions to generate a quaternary carbon center, while AsqO from the aspoquinolone pathway catalyzes a 3-exo-tet cyclization to forge a cyclopropane-tetrahydrofuran ring system. The discovery of these new epoxide-modifying enzymes further highlights the versatility of epoxides in complexity generation during natural product biosynthesis.
引用
下载
收藏
页码:325 / +
页数:10
相关论文
共 50 条
  • [1] Enzyme-catalyzed cationic epoxide rearrangements in quinolone alkaloid biosynthesis
    Zou Y.
    Garcia-Borràs M.
    Tang M.C.
    Hirayama Y.
    Li D.H.
    Li L.
    Watanabe K.
    Houk K.N.
    Tang Y.
    Nature Chemical Biology, 2017, 13 (3) : 325 - 332
  • [2] Enzyme-Catalyzed Azepinoindole Formation in Clavine Alkaloid Biosynthesis
    Chen, Kuan-Lin
    Lai, Chen-Yu
    Mai-Truc Pham
    Chein, Rong-Jie
    Tang, Yi
    Lin, Hsiao-Ching
    ORGANIC LETTERS, 2020, 22 (08) : 3302 - 3306
  • [3] ENZYME-CATALYZED ALLYLIC REARRANGEMENTS
    SCHWAB, JM
    HENDERSON, BS
    CHEMICAL REVIEWS, 1990, 90 (07) : 1203 - 1245
  • [4] Symmetry breaking by enzyme-catalyzed epoxide hydrolysis
    Schofield, Christopher J.
    IUCRJ, 2018, 5 : 373 - 374
  • [5] OPTIMIZATION OF THE ENZYME-CATALYZED BIOSYNTHESIS OF METHYL ACETATE
    PERRAUD, R
    MOREAU, L
    KRAHE, E
    DEUTSCHE LEBENSMITTEL-RUNDSCHAU, 1995, 91 (07) : 219 - 221
  • [6] Enzyme-Catalyzed Spiroacetal Formation in Polyketide Antibiotic Biosynthesis
    Bilyk, Oksana
    Oliveira, Gabriel S.
    de Angelo, Rafaela M.
    Almeida, Michell O.
    Honorio, Kathia Maria
    Leeper, Finian J.
    Dias, Marcio V. B.
    Leadlay, Peter F.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (32) : 14555 - 14563
  • [7] Enzyme-Catalyzed Spiroacetal Formation in Polyketide Antibiotic Biosynthesis
    Bilyk, Oksana
    Oliveira, Gabriel S.
    De Angelo, Rafaela M.
    Almeida, Michell O.
    Honório, Kathia Maria
    Leeper, Finian J.
    Dias, Marcio V. B.
    Leadlay, Peter F.
    Journal of the American Chemical Society, 2022, 144 (32): : 14555 - 14563
  • [8] ENZYME-CATALYZED DISULFIDE INTERCHANGE AND PROTEIN-BIOSYNTHESIS
    FREEDMAN, RB
    HAWKINS, HC
    BIOCHEMICAL SOCIETY TRANSACTIONS, 1977, 5 (01) : 348 - 357
  • [9] Insight into enzyme-catalyzed aziridine formation mechanism in ficellomycin biosynthesis
    Yue, Rong
    Li, Meng
    Wang, Yue
    Guan, Ying
    Zhang, Jing
    Yan, Zhongli
    Liu, Fufeng
    Lu, Fuping
    Zhang, Huitu
    EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2020, 204
  • [10] Deep eutectic solvents (DESs) are viable cosolvents for enzyme-catalyzed epoxide hydrolysis
    Lindberg, Diana
    de la Fuente Revenga, Mario
    Widersten, Mikael
    JOURNAL OF BIOTECHNOLOGY, 2010, 147 (3-4) : 169 - 171