The effect of Sn intercalation on the superconducting properties of 2H-NbSe2

被引:15
|
作者
Naik, Subham [1 ]
Pradhan, Gopal K. [2 ,3 ]
Bhat, Shwetha G. [4 ]
Behera, Bhaskar Chandra [2 ]
Kumar, P. S. Anil [4 ]
Samal, Saroj L. [1 ]
Samal, D. [2 ,5 ]
机构
[1] NIT Rourkela, Dept Chem, Rourkela 769008, Odisha, India
[2] Inst Phys, Bhubaneswar 751005, India
[3] KIIT Deemed Univ, Sch Appl Sci, Dept Phys, Bhubaneswar 751024, Odisha, India
[4] IISc Bangalore, Dept Phys, Bangalore, Karnataka, India
[5] Homi Bhabha Natl Inst, Mumbai 400085, Maharashtra, India
关键词
Transition metal dichalcogenide; Intercalation; Upper Critical Field; WHH formalism; Raman scattering; CDW; Magnetotransport; TRANSITION; SCATTERING; STATE;
D O I
10.1016/j.physc.2019.02.011
中图分类号
O59 [应用物理学];
学科分类号
摘要
2H-NbSe2 is known to be an archetype layered transitional metal dichalcogenide superconductor with a superconducting transition temperature of 7.3 K. In this article, we investigate the influence of Sn intercalation on superconducting properties of 2H-NbSe2. Sn being nonmagnetic and having no outer shell d-electrons unlike transition metals, one naively would presume that its effect on superconducting properties will be very marginal. However, our magnetic and transport studies reveal a significant reduction of both superconducting transition temperature and upper critical field [T-c and B-c2 (0)] upon Sn intercalation. With a mere 4 mole% Sn intercalation, it is observed that T-c and B-c2 (0) get suppressed by 3.5 K and 3 T, respectively. Werthamer-HelfandHohenberg (WHH) analysis of magneto-transport data is performed to estimate B-c2 (0). From the low temperature Raman scattering data in the normal phase of intercalated 2H-NbSe2, it is inferred that the suppression of superconductivity cannot be ascribed to strengthening of charge density wave (CDW) ordering. Rather, the weakening of superconductivity is attributed to the observed increase of c-axis lattice parameter and the possible changes in the Fermi surface upon Sn intercalation.
引用
收藏
页码:18 / 23
页数:6
相关论文
共 50 条
  • [21] Tilted vortex cores and superconducting gap anisotropy in 2H-NbSe2
    Galvis, J. A.
    Herrera, E.
    Berthod, C.
    Vieira, S.
    Guillamon, I.
    Suderow, H.
    COMMUNICATIONS PHYSICS, 2018, 1
  • [22] Anisotropy of 2H-NbSe2 in the superconducting and charge density wave states
    Zhang, Chi
    Qiao, Shan
    Xiao, Hong
    Hu, Tao
    CHINESE PHYSICS B, 2023, 32 (04)
  • [23] Tilted vortex cores and superconducting gap anisotropy in 2H-NbSe2
    J. A. Galvis
    E. Herrera
    C. Berthod
    S. Vieira
    I. Guillamón
    H. Suderow
    Communications Physics, 1
  • [24] Magnetostriction in the mixed state of superconducting 2H-NbSe2 single crystals
    Eremenko, VV
    Sirenko, VA
    Schleser, R
    Gammel, PL
    LOW TEMPERATURE PHYSICS, 2001, 27 (04) : 305 - 310
  • [25] Magnetization and magnetostriction oscillations in a superconducting 2H-NbSe2 single crystal
    Eremenko, V
    Sirenko, V
    Shabakayeva, Y
    Schleser, R
    Gammel, PL
    LOW TEMPERATURE PHYSICS, 2001, 27 (9-10) : 700 - 703
  • [26] Magnetostriction in the mixed state of superconducting 2H-NbSe2 single crystals
    Eremenko, V.V.
    Sirenko, V.A.
    Schleser, R.
    Gammel, P.L.
    2001, Institute for Low Temperature Physics and Engineering (27):
  • [27] Anisotropy of 2H-NbSe2 in the superconducting and charge density wave states
    张驰
    乔山
    肖宏
    胡涛
    Chinese Physics B, 2023, (04) : 679 - 683
  • [28] EFFECT OF HYDROGEN INTERCALATION ON TEMPERATURE DEPENDENCE OF ELECTRICAL RESISTANCE OF 2H-NbSe2 SINGLE CRYSTALS.
    Balla, D.D.
    Golovko, L.S.
    Koleskinov, V.N.
    Obolenskii, M.A.
    Chashka, Kh.B.
    1978, 4 (05): : 298 - 299
  • [29] ELECTROINTERCALATION OF SILVER INTO 2H-NBSE2
    FOLINSBEE, JT
    JERICHO, MH
    MARCH, RH
    TINDALL, DA
    CANADIAN JOURNAL OF PHYSICS, 1981, 59 (09) : 1267 - 1277
  • [30] Low-Frequency Imaginary Impedance at the Superconducting Transition of 2H-NbSe2
    Perconte, David
    Manas-Valero, Samuel
    Coronado, Eugenio
    Guillamon, Isabel
    Suderow, Hermann
    PHYSICAL REVIEW APPLIED, 2020, 13 (05):