Polarization-Insensitive Hybrid Plasmonic Waveguide Design for Evanescent Field Absorption Gas Sensor

被引:21
|
作者
Kazanskiy, Nikolay Lvovich [1 ,2 ]
Khonina, Svetlana Nikolaevna [1 ,2 ]
Butt, Muhammad Ali [1 ,3 ]
机构
[1] Samara Natl Res Univ, Dept Tech Cybernet, Moskovskoye Shosse 34, Samara 443086, Russia
[2] RAS, Branch FSRC Crystallog & Photon, Inst RAS, Molodogvardeiskaya 151, Samara 443001, Russia
[3] Warsaw Univ Technol, Inst Microelect & Optoelect, Koszykowa 75, PL-00662 Warsaw, Poland
基金
俄罗斯基础研究基金会;
关键词
Hybrid plasmonic waveguide; finite element method; methane gas; evanescent field absorption gas sensor; polarization-insensitive; SILICON;
D O I
10.1007/s13320-020-0601-6
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We propose a polarization-insensitive design of a hybrid plasmonic waveguide (HPWG) optimized at the 3.392 mu m wavelength which corresponds to the absorption line of methane gas. The waveguide design is capable of providing high mode sensitivity (S-mode) and evanescent field ratio (EFR) for both transverse electric (TE) and transverse magnetic (TM) hybrid modes. The modal analysis of the waveguide is performed via 2-dimension (2D) and 3-dimension (3D) finite element methods (FEMs). At optimized waveguide parameters, S-mode and EFR of 0.94 and 0.704, can be obtained for the TE hybrid mode, respectively, whereas the TM hybrid mode can offer S-mode and EFR of 0.86 and 0.67, respectively. The TE and TM hybrid modes power dissipation of similar to 3 dB can be obtained for a 20-mu m-long hybrid plasmonic waveguide at the 60% gas concentration. We believe that the highly sensitive waveguide scheme proposed in this work overcomes the limitation of the polarization controlled light and can be utilized in gas sensing applications.
引用
收藏
页码:279 / 290
页数:12
相关论文
共 50 条
  • [31] Ultracompact Polarization-Insensitive Waveguide Crossing Based on Dielectric Metasurface
    Liu, Boai
    Wan, Yu
    Liu, Yingjie
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2024, 36 (01) : 39 - 42
  • [32] On the design of polarization-insensitive semiconductor optical amplifiers
    Wartak, MS
    Weetman, P
    [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2002, 35 (03) : 227 - 230
  • [33] A Polarization-Insensitive Frequency Selective Radome with Wideband Absorption
    Pandey, Ritesh Kumar
    Ghosh, Saptarshi
    Sheokand, Harsh
    Saikia, Mondeep
    Srivastava, Kumar Vaibhav
    [J]. 2017 4TH IEEE UTTAR PRADESH SECTION INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND ELECTRONICS (UPCON), 2017, : 556 - 561
  • [34] Inverse-designed Compact and Polarization-insensitive Waveguide Crossing
    Wu, Sailong
    Mu, Xin
    Cheng, Lirong
    Tu, Xin
    Fu, H. Y.
    [J]. 2019 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2019,
  • [35] Polarization-Insensitive Silicon Photonic Filter With Multimode Waveguide Gratings
    Zhu, Mingyu
    Liu, Dajian
    Li, Wenlei
    Zhao, Weike
    Zhao, Shi
    Gao, Chun
    He, Jianghao
    Peng, Yingying
    Dai, Daoxin
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2024, 42 (08) : 2917 - 2922
  • [36] Polarization-insensitive PECVD SiC waveguides for sensor platform
    Pandraud, G
    Pham, HTM
    French, PJ
    Sarro, PM
    [J]. OPTICAL MATERIALS, 2006, 28 (04) : 380 - 384
  • [37] Evanescent field absorption sensor
    Wojcik, W
    Kotyra, A
    Przylucki, S
    Smolarz, A
    Szymczak, JT
    [J]. OPTOELECTRONIC AND ELECTRONIC SENSORS II, 1997, 3054 : 132 - 136
  • [38] Design of Polarization-Insensitive Directional Couplers and Multimode Interference Couplers Integrated with Bragg Grating Waveguide
    Ho, Kwang-Chun
    [J]. KOREAN JOURNAL OF OPTICS AND PHOTONICS, 2007, 18 (05) : 295 - 302
  • [39] A Photonic Silicon Waveguide Gas Sensor Using Evanescent-Wave Absorption
    Ranacher, Christian
    Consani, Cristina
    Hedenig, Ursula
    Grille, Thomas
    Lavchiev, Ventsislav
    Jakoby, Bernhard
    [J]. 2016 IEEE SENSORS, 2016,
  • [40] Polarization Splitter With Hybrid Plasmonic Waveguide
    Chee, Jingyee
    Zhu, Shiyang
    Zhou, Haifeng
    Guo-qiang, Patrick Lo
    [J]. 2012 IEEE ASIA-PACIFIC CONFERENCE ON ANTENNAS AND PROPAGATION (APCAP), 2012, : 130 - 131