Prediction of non-linear time-variant dynamic crop model using bayesian methods

被引:0
|
作者
Mansouri, M. [1 ]
Dumont, B. [1 ]
Destain, M. -F. [1 ]
机构
[1] Univ Liege GxABT, Dept Sci & Technol Environm, B-5030 Gembloux, Belgium
来源
关键词
crop model; variational filter; extended Kalman filter; particle filter; LAI; soil moisture prediction; PARAMETER-ESTIMATION; WATER;
D O I
暂无
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
This work addresses the problem of predicting a non-linear time-variant leaf area index and soil moisture model (LSM) using state estimation. These techniques include the extended Kalman filter (EKF), particle filter (PF) and the more recently developed technique, variational filter (VF). In the comparative study, the state variables (the leaf-area index LAI, the volumetric water content. of the layer 1, HUR1 and the volumetric water content of the layer 2, HUR2) are estimated from noisy measurements of these variables, and the various estimation techniques are compared by computing the estimation root mean square error with respect to the noise-free data. The results show that VF provides a significant improvement over EKF and PF.
引用
收藏
页码:507 / 513
页数:7
相关论文
共 50 条
  • [41] A method of non-linear time series prediction
    Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland
    Syst Sci, 2008, 2 (11-16):
  • [42] Identification of linear time-variant systems without using prior information
    Yang, Y
    Lev-Ari, H
    2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 1741 - 1744
  • [43] A time-variant dynamic model for compound epicyclic-cycloidal reducers
    Tung, Liang-Chen
    Chan, Yum Ji
    MECHANISM AND MACHINE THEORY, 2023, 179
  • [44] Linear Time-Variant System Identification Using FMCW Radar Systems
    Poguntke, Tim
    Ochs, Karlheinz
    2016 IEEE 59TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2016, : 489 - 492
  • [45] A time-variant reliability analysis method for non-linear limit-state functions with the mixture of random and interval variables
    Li, Fangyi
    Liu, Jie
    Yan, Yufei
    Rong, Jianhua
    Yi, Jijun
    Wen, Guilin
    ENGINEERING STRUCTURES, 2020, 213
  • [46] Spectral Efficiency of Time-Variant Massive MIMO Using Wiener Prediction
    Loeschenbrand, David
    Hofer, Markus
    Zemen, Thomas
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (04) : 1225 - 1229
  • [47] Improved EEG Segmentation Using Non-linear Volterra Model in Bayesian Method
    Hassani, Malihe
    Karami, Mohammad-Reza
    IETE JOURNAL OF RESEARCH, 2018, 64 (06) : 832 - 842
  • [48] A simple non-linear model incidence prediction
    Dyba, T
    Hakulinen, T
    Paivarinta, L
    STATISTICS IN MEDICINE, 1997, 16 (20) : 2297 - 2309
  • [49] Reverse engineering gene regulatory network from microarray data using linear time-variant model
    Kabir, Mitra
    Noman, Nasimul
    Iba, Hitoshi
    BMC BIOINFORMATICS, 2010, 11
  • [50] Tapped delay line model of linear randomly time-variant WSSUS channel
    Sykora, J
    ELECTRONICS LETTERS, 2000, 36 (19) : 1656 - 1657