Prediction of COVID-19 Data Using an ARIMA-LSTM Hybrid Forecast Model

被引:12
|
作者
Jin, Yongchao [1 ]
Wang, Renfang [1 ]
Zhuang, Xiaodie [1 ]
Wang, Kenan [1 ]
Wang, Honglian [1 ]
Wang, Chenxi [1 ]
Wang, Xiyin [1 ]
机构
[1] North China Univ Sci & Technol, Coll Sci, Tangshan 063210, Peoples R China
基金
中国国家自然科学基金;
关键词
ARIMA; LSTM; SVR; linear regression; number of cases forecast;
D O I
10.3390/math10214001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this study is to study the spread of COVID-19, establish a predictive model, and provide guidance for its prevention and control. Considering the high complexity of epidemic data, we adopted an ARIMA-LSTM combined model to describe and predict future transmission. A new method of the ARIMA-LSTM model paralleling by weight of regression coefficient was proposed. Then, we used the ARIMA-LSTM model paralleling by weight of regression coefficient, ARIMA model, and ARIMA-LSTM series model to predict the epidemic data in China, and we found that the ARIMA-LSTM model paralleling by weight of regression coefficient had the best prediction accuracy. In the ARIMA-LSTM model paralleling by weight of regression coefficient, MSE = 4049.913, RMSE = 63.639, MAPE = 0.205, R-2 = 0.837, MAE = 44.320. In order to verify the effectiveness of the ARIMA-LSTM model paralleling by weight of regression coefficient, we compared the ARIMA-LSTM model paralleling by weight of regression coefficient with the SVR model and found that ARIMA-LSTM model paralleling by weight of regression coefficient has better prediction accuracy. It was further verified with the epidemic data of India and found that the prediction accuracy of the ARIMA-LSTM model paralleling by weight of regression coefficient was still higher than that of the SVR model. In the ARIMA-LSTM model paralleling by weight of regression coefficient, MSE = 744,904.6, RMSE = 863.079, MAPE = 0.107, R-2 = 0.983, MAE = 580.348. Finally, we used the ARIMA-LSTM model paralleling by weight of regression coefficient to predict the future epidemic situation in China. We found that in the next 60 days, the epidemic situation in China will become a steady downward trend.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Analysis and prediction of nuclear power plant operation events based on ARIMA-LSTM model
    Hou, Qinmai
    Zhu, Wei
    Zou, Xiang
    Liu, Shixian
    Wu, Yannong
    He Jishu/Nuclear Techniques, 2022, 45 (12):
  • [32] LSTM algorithm optimization for COVID-19 prediction model
    Sembiring, Irwan
    Wahyuni, Sri Ngudi
    Sediyono, Eko
    HELIYON, 2024, 10 (04)
  • [33] Prediction of COVID-19 Data Using Hybrid Modeling Approaches
    Zhao, Weiping
    Sun, Yunpeng
    Li, Ying
    Guan, Weimin
    FRONTIERS IN PUBLIC HEALTH, 2022, 10
  • [34] A forecasting method of pharmaceutical sales based on ARIMA-LSTM model
    Han, Yuxuan
    2020 5TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE, COMPUTER TECHNOLOGY AND TRANSPORTATION (ISCTT 2020), 2020, : 336 - 339
  • [35] COVID-19 Patient Count Prediction Using LSTM
    Iqbal, Muhammad
    Al-Obeidat, Feras
    Maqbool, Fahad
    Razzaq, Saad
    Anwar, Sajid
    Tubaishat, Abdallah
    Khan, Muhammad Shahrose
    Shah, Babar
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2021, 8 (04) : 974 - 981
  • [36] An interpretable hybrid predictive model of COVID-19 cases using autoregressive model and LSTM
    Zhang, Yangyi
    Tang, Sui
    Yu, Guo
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [37] An interpretable hybrid predictive model of COVID-19 cases using autoregressive model and LSTM
    Yangyi Zhang
    Sui Tang
    Guo Yu
    Scientific Reports, 13
  • [38] Enterprise Economic Forecasting Method Based on ARIMA-LSTM Model
    Dong, Xiaofei
    Zong, Xuesen
    Li, Peng
    Wang, Jinlong
    INTELLIGENT TECHNOLOGIES FOR INTERACTIVE ENTERTAINMENT, INTETAIN 2021, 2022, 429 : 36 - 57
  • [39] COVID-19 mRNA Vaccine Degradation Prediction using Regularized LSTM Model
    Imran, Sheikh Asif
    Islam, Md Tariqul
    Shahnaz, Celia
    Islam, Md Tafhimul
    Imam, Omar Tawhid
    Haque, Moinul
    PROCEEDINGS OF 2020 6TH IEEE INTERNATIONAL WOMEN IN ENGINEERING (WIE) CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (WIECON-ECE 2020), 2020, : 332 - 335
  • [40] Forecasting COVID-19 Pandemic Using Prophet, ARIMA, and Hybrid Stacked LSTM-GRU Models in India
    Sah, Sweeti
    Surendiran, B.
    Dhanalakshmi, R.
    Mohanty, Sachi Nandan
    Alenezi, Fayadh
    Polat, Kemal
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2022, 2022