Converse prime element theorems for arithmetical semigroups

被引:0
|
作者
Warlimont, R [1 ]
机构
[1] Univ Witwatersrand, John Knopfmacher Ctr Applicable Anal Number Theor, ZA-2050 Wits, South Africa
关键词
arithmetical semigroups; unlabelled structures;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Conditions are presented which ensure that in an additive (multiplicative) arithmetical semigroup a positive proportion of all elements are prime elements. Under these conditions asymptotics are derived for the average number of elements with a fixed number of prime element factors, counted with and without multiplicity.
引用
收藏
页码:147 / 168
页数:22
相关论文
共 50 条
  • [31] ON THE LEAST PRIME IN AN ARITHMETICAL PROGRESSION AND TWO THEOREMS CONCERNING THE ZEROS OF DIRICHLET'S L-FUNCTIONS
    陈景润
    [J]. Science China Mathematics, 1977, (05) : 529 - 562
  • [32] Converse theorems for GLn -: II
    Cogdell, JW
    Piatetski-Shapiro, II
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1999, 507 : 165 - 188
  • [33] Arithmetical semigroups related to trees and polyhedra
    Knopfmacher, A
    Knopfmacher, J
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1999, 86 (01) : 85 - 102
  • [34] LEAST PRIME IN AN ARITHMETICAL PROGRESSION AND THEOREMS CONCERNING THE ZEROS OF DIRICHLETS L-FUNCTIONS .2.
    CHEN, J
    [J]. SCIENTIA SINICA, 1979, 22 (08): : 859 - 889
  • [35] CONVERSE THEOREMS FOR GL(n)
    Gogdell, J. W.
    Piatetski-Shapiro, I. I.
    [J]. PUBLICATIONS MATHEMATIQUES, 1994, (79): : 157 - 214
  • [36] Homomorphism theorem and isomorphish theorems for torsion semigroups with a unique idempotent element
    Zheng, Baodong
    Zhang, Chunrui
    [J]. Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 1995, 27 (02):
  • [37] Limit Theorems and Converse Comparison Theorems for Generators of BSDEs
    Zheng, Shiqiu
    He, Yali
    Yang, Aimin
    Guo, Xiaoqiang
    Wang, Ling
    [J]. INFORMATION COMPUTING AND APPLICATIONS, PT II, 2011, 244 : 49 - 56
  • [38] ON THE GREATEST PRIME DIVISOR OF AN ARITHMETICAL SEQUENCE
    ABOOD, HM
    [J]. VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1989, (06): : 3 - 7
  • [39] PRIME SEMIGROUPS AND SEMIRINGS
    ROSENFELD, A
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (08): : 933 - +
  • [40] Generalizations of Alladi's formula for arithmetical semigroups
    Duan, Lian
    Ma, Ning
    Yi, Shaoyun
    [J]. RAMANUJAN JOURNAL, 2022, 58 (04): : 1285 - 1319