Multi-swarm Particle Grid Optimization for Object Tracking

被引:0
|
作者
Sha, Feng [1 ]
Yeung, Henry Wing Fung [1 ]
Chung, Yuk Ying [1 ]
Liu, Guang [1 ]
Yeh, Wei-Chang [2 ]
机构
[1] Univ Sydney, Sch Informat Technol, Sydney, NSW 2006, Australia
[2] Natl Tsing Hua Univ, Dept Ind Engn & Engn Management, POB 24-60, Hsinchu 300, Taiwan
关键词
Object tracking; Multi-swarm; PSO; Color histogram;
D O I
10.1007/978-3-319-46672-9_79
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, one of the popular swarm intelligence algorithm Particle Swarm Optimization has demonstrated to have efficient and accurate outcomes for tracking different object movement. But there are still problems of multiple interferences in object tracking need to overcome. In this paper, we propose a new multiple swarm approach to improve the efficiency of the particle swarm optimization in object tracking. This proposed algorithm will allocate multiple swarms in separate frame grids to provide higher accuracy and wider search domain to overcome some interferences problem which can produce a stable and precise tracking orbit. It can also achieve better quality in target focusing and retrieval. The results in real environment experiments have been proved to have better performance when compare to other traditional methods like Particle Filter, Genetic Algorithm and traditional PSO.
引用
收藏
页码:707 / 714
页数:8
相关论文
共 50 条
  • [31] Particle Multi-Swarm Optimization: A Proposal of Multiple Particle Swarm Optimizers with Information Sharing
    Sho, Hiroshi
    2017 IEEE 10TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (IWCIA), 2017, : 109 - 114
  • [32] A novel multi-swarm algorithm for optimization in dynamic environments based on particle swarm optimization
    Yazdani, Danial
    Nasiri, Babak
    Sepas-Moghaddam, Alireza
    Meybodi, Mohammad Reza
    APPLIED SOFT COMPUTING, 2013, 13 (04) : 2144 - 2158
  • [33] A constrained multi-swarm particle swarm optimization without velocity for constrained optimization problems
    Ang, Koon Meng
    Lim, Wei Hong
    Isa, Nor Ashidi Mat
    Tiang, Sew Sun
    Wong, Chin Hong
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 140
  • [34] A Categorized Particle Swarm Optimization for Object Tracking
    Sha, Feng
    Bae, Changseok
    Liu, Guang
    Zhao, XiMeng
    Chung, Yuk Ying
    Yeh, WeiChang
    2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2015, : 2737 - 2744
  • [35] Particle Swarm Optimization Based Object Tracking
    Kwolek, Bogdan
    FUNDAMENTA INFORMATICAE, 2009, 95 (04) : 449 - 463
  • [36] Evaluation of asynchronous multi-swarm particle optimization on several topologies
    de Campos, Arion, Jr.
    Pozo, Aurora T. R.
    Duarte, Elias P., Jr.
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2013, 25 (08): : 1057 - 1071
  • [37] Pressure Vessel Design Simulation: Implementing of Multi-Swarm Particle Swarm Optimization
    Salih, Sinan Q.
    Alsewari, AbdulRahman A.
    Yaseen, Zaher M.
    2019 8TH INTERNATIONAL CONFERENCE ON SOFTWARE AND COMPUTER APPLICATIONS (ICSCA 2019), 2019, : 120 - 124
  • [38] Multi-swarm Particle Swarm Optimizer with Cauchy Mutation for Dynamic Optimization Problems
    Hu, Chengyu
    Wu, Xiangning
    Wang, Yongji
    Xie, Fuqiang
    ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2009, 5821 : 443 - +
  • [39] Dynamic multi-swarm particle swarm optimizer
    Liang, JJ
    Suganthan, PN
    2005 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2005, : 124 - 129
  • [40] A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization
    Liu, Ruochen
    Li, Jianxia
    Fan, Jing
    Mu, Caihong
    Jiao, Licheng
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2017, 261 (03) : 1028 - 1051