Thermomagnetic analysis of FeCoCrxNi alloys: Magnetic entropy of high-entropy alloys

被引:93
|
作者
Lucas, M. S. [1 ,2 ]
Belyea, D. [3 ]
Bauer, C. [3 ]
Bryant, N. [1 ,4 ]
Michel, E. [1 ,4 ]
Turgut, Z. [1 ,5 ]
Leontsev, S. O. [1 ,6 ]
Horwath, J. [1 ]
Semiatin, S. L. [1 ]
McHenry, M. E. [7 ]
Miller, C. W. [3 ]
机构
[1] USAF, Res Lab, Wright Patterson AFB, OH 45433 USA
[2] UTC Inc, Dayton, OH 45432 USA
[3] Univ S Florida, Dept Phys, Tampa, FL 33620 USA
[4] Wright State Univ, Dayton, OH 45435 USA
[5] UES Inc, Wright Patterson AFB, OH 45433 USA
[6] Univ Dayton, Res Inst, Dayton, OH 45469 USA
[7] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.4798340
中图分类号
O59 [应用物理学];
学科分类号
摘要
The equimolar alloy FeCoCrNi, a high-entropy alloy, forms in the face-centered-cubic crystal structure and has a ferromagnetic Curie temperature of 130 K. In this study, we explore the effects of Cr concentration, cold-rolling, and subsequent heat treatments on the magnetic properties of FeCoCrxNi alloys. Cr reductions result in an increase of the Curie temperature, and may be used to tune the T-C over a very large temperature range. The magnetic entropy change for a change in applied field of 2T is Delta S-m = -0.35 J/(kg K) for cold-rolled FeCoCrNi. Cold-rolling results in a broadening of Delta S-m, where subsequent heat treatment at 1073 K sharpens the magnetic entropy curve. In all of the alloys, we find that upon heating (after cold-rolling) there is a re-entrant magnetic moment near 730 K. This feature is much less pronounced in the as-cast samples (without cold-rolling) and in the Cr-rich samples, and is no longer observed after annealing at 1073 K. Possible origins of this behavior are discussed. (C) 2013 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Magnetic and Electrochemical Properties of FeCoCrNiZrx High-Entropy Alloys
    Lei, Sheng
    Liu, Yafeng
    Li, Shuai
    Zhang, Zhengbin
    Hu, Shanshan
    Sun, Xu
    Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2021, 50 (09): : 3050 - 3055
  • [32] From high-entropy alloys to complex concentrated alloys
    Gorsse, Stephane
    Couzinie, Jean-Philippe
    Miracle, Daniel B.
    COMPTES RENDUS PHYSIQUE, 2018, 19 (08) : 721 - 736
  • [33] Novel Frontiers in High-Entropy Alloys
    Bridges, Denzel
    Fieser, David
    Santiago, Jannira J. J.
    Hu, Anming
    METALS, 2023, 13 (07)
  • [34] Mechanical behavior of high-entropy alloys
    Li, Weidong
    Xie, Di
    Li, Dongyue
    Zhang, Yong
    Gao, Yanfei
    Liaw, Peter K.
    PROGRESS IN MATERIALS SCIENCE, 2021, 118
  • [35] Phase Engineering of High-Entropy Alloys
    Chang, Xuejiao
    Zeng, Mengqi
    Liu, Keli
    Fu, Lei
    ADVANCED MATERIALS, 2020, 32 (14)
  • [36] Design of Refractory High-Entropy Alloys
    M. C. Gao
    C. S. Carney
    Ö. N. Doğan
    P. D. Jablonksi
    J. A. Hawk
    D. E. Alman
    JOM, 2015, 67 : 2653 - 2669
  • [37] The Thermodynamics and Kinetics of High-Entropy Alloys
    Gao, M. C.
    Zhao, J. -C.
    Morral, J. E.
    JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION, 2017, 38 (04) : 351 - 352
  • [38] Fracture properties of high-entropy alloys
    Gludovatz, Bernd
    Ritchie, Robert O.
    MRS BULLETIN, 2022, 47 (02) : 176 - 185
  • [39] Metastability in high-entropy alloys: A review
    Shaolou Wei
    Feng He
    Cemal Cem Tasan
    Journal of Materials Research, 2018, 33 : 2924 - 2937
  • [40] An Overview of High-Entropy Alloys as Biomaterials
    Castro, Diogo
    Jaeger, Pedro
    Baptista, Ana Catarina
    Oliveira, Joao Pedro
    METALS, 2021, 11 (04)