Bayesian nonparametric inference on stochastic ordering

被引:24
|
作者
Dunson, David B. [1 ]
Peddada, Shyamal D. [2 ]
机构
[1] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
[2] NIEHS, Biostat Branch, Res Triangle Pk, NC 27709 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1093/biomet/asn043
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider Bayesian inference about collections of unknown distributions subject to a partial stochastic ordering. To address problems in testing of equalities between groups and estimation of group-specific distributions, we propose classes of restricted dependent Dirichlet process priors. These priors have full support in the space of stochastically ordered distributions, and can be used for collections of unknown mixture distributions to obtain a flexible class of mixture models. Theoretical properties are discussed, efficient methods are developed for posterior computation using Markov chain Monte Carlo simulation and the methods are illustrated using data from a study of DNA damage and repair.
引用
收藏
页码:859 / 874
页数:16
相关论文
共 50 条
  • [21] Inference in the nonparametric stochastic frontier model
    Parmeter, Christopher F.
    Simar, Leopold
    Van Keilegom, Ingrid
    Zelenyuk, Valentin
    [J]. ECONOMETRIC REVIEWS, 2024, 43 (07) : 518 - 539
  • [22] On the utility of the stochastic processes in modeling the nexus between entrepreneurship and innovation: a nonparametric application of Bayesian inference
    Faghih, Nezameddin
    Bonyadi, Ebrahim
    Sarreshtehdari, Lida
    [J]. JOURNAL OF GLOBAL ENTREPRENEURSHIP RESEARCH, 2021, 11 (01) : 97 - 111
  • [23] Nonparametric Bayesian Modeling for Stochastic Order
    Alan E. Gelfand
    Athanasios Kottas
    [J]. Annals of the Institute of Statistical Mathematics, 2001, 53 : 865 - 876
  • [24] Nonparametric Bayesian modeling for stochastic order
    Gelfand, AE
    Kottas, A
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2001, 53 (04) : 865 - 876
  • [25] On the utility of the stochastic processes in modeling the nexus between entrepreneurship and innovation: a nonparametric application of Bayesian inference
    Nezameddin Faghih
    Ebrahim Bonyadi
    Lida Sarreshtehdari
    [J]. Journal of Global Entrepreneurship Research, 2021, 11 : 97 - 111
  • [26] Bayesian inference for stochastic processes
    Isheden, Gabriel
    [J]. BIOMETRICS, 2019, 75 (04) : 1414 - 1415
  • [27] A Bayesian nonparametric approach to causal inference on quantiles
    Xu, Dandan
    Daniels, Michael J.
    Winterstein, Almut G.
    [J]. BIOMETRICS, 2018, 74 (03) : 986 - 996
  • [28] The how and why of Bayesian nonparametric causal inference
    Linero, Antonio R.
    Antonelli, Joseph L.
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2023, 15 (01)
  • [29] Bayesian Nonparametric Inference Why and How Comment
    Kottas, Athanasios
    DeYoreo, Maria
    Poynor, Valerie
    [J]. BAYESIAN ANALYSIS, 2013, 8 (02): : 338 - 341
  • [30] An enriched conjugate prior for Bayesian nonparametric inference
    Wade, Sara
    Mongelluzzo, Silvia
    Petrone, Sonia
    [J]. BAYESIAN ANALYSIS, 2011, 6 (03): : 359 - 386