Pseudomonas aeruginosa Utilizes the Type III Secreted Toxin ExoS to Avoid Acidified Compartments within Epithelial Cells

被引:48
|
作者
Heimer, Susan R. [1 ,2 ]
Evans, David J. [1 ,2 ]
Stern, Michael E. [3 ]
Barbieri, Joseph T. [4 ]
Yahr, Timothy [5 ]
Fleiszig, Suzanne M. J. [1 ,6 ,7 ,8 ]
机构
[1] Univ Calif Berkeley, Sch Optometry, Berkeley, CA 94720 USA
[2] Touro Univ Calif, Coll Pharm, Vallejo, CA USA
[3] Allergan Pharmaceut Inc, Irvine, CA USA
[4] Med Coll Wisconsin, Milwaukee, WI 53226 USA
[5] Univ Iowa, Dept Microbiol, Iowa City, IA 52242 USA
[6] Univ Calif Berkeley, Grad Grp Vis Sci, Berkeley, CA 94720 USA
[7] Univ Calif Berkeley, Grad Grp Microbiol, Berkeley, CA 94720 USA
[8] Univ Calif Berkeley, Grad Grp Infect Dis & Immun, Berkeley, CA 94720 USA
来源
PLOS ONE | 2013年 / 8卷 / 09期
基金
美国国家卫生研究院;
关键词
ADP-RIBOSYLATION DOMAIN; EXOENZYME-S; INTRACELLULAR-LOCALIZATION; BURKHOLDERIA-CENOCEPACIA; IN-VIVO; VACUOLES; MACROPHAGES; MATURATION; SURVIVAL; EXSA;
D O I
10.1371/journal.pone.0073111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Invasive Pseudomonas aeruginosa (PA) can enter epithelial cells wherein they mediate formation of plasma membrane bleb-niches for intracellular compartmentalization. This phenotype, and capacity for intracellular replication, requires the ADP-ribosyltransferase (ADPr) activity of ExoS, a PA type III secretion system (T3SS) effector protein. Thus, PA T3SS mutants lack these capacities and instead traffic to perinuclear vacuoles. Here, we tested the hypothesis that the T3SS, via the ADPr activity of ExoS, allows PA to evade acidic vacuoles that otherwise suppress its intracellular viability. The acidification state of bacteria-occupied vacuoles within infected corneal epithelial cells was studied using LysoTracker to visualize acidic, lysosomal vacuoles. Steady state analysis showed that within cells wild-type PAO1 localized to both membrane bleb-niches and vacuoles, while both exsA (transcriptional activator) and popB (effector translocation) T3SS mutants were only found in vacuoles. The acidification state of occupied vacuoles suggested a relationship with ExoS expression, i.e. vacuoles occupied by the exsA mutant (unable to express ExoS) were more often acidified than either popB mutant or wild-type PAO1 occupied vacuoles (p < 0.001). An exoS-gfp reporter construct pJNE05 confirmed that high exoS transcriptional output coincided with low occupation of acidified vacuoles, and vice versa, for both popB mutants and wild-type bacteria. Complementation of a triple effector null mutant of PAO1 with exoS (pUCPexoS) reduced the number of acidified bacteria-occupied vacuoles per cell; pUCPexoSE381D which lacks ADPr activity did not. The H+-ATPase inhibitor bafilomycin rescued intracellular replication to wild-type levels for exsA mutants, showing its viability is suppressed by vacuolar acidification. Taken together, the data show that the mechanism by which ExoS ADPr activity allows intracellular replication by PA involves suppression of vacuolar acidification. They also show that variability in ExoS expression by wild-type PA inside cells can differentially influence the fate of individual intracellular bacteria, even within the same cell.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Pseudomonas aeruginosa acquires biofilm-like properties within airway epithelial cells
    Garcia-Medina, R
    Dunne, WM
    Singh, PK
    Brody, SL
    INFECTION AND IMMUNITY, 2005, 73 (12) : 8298 - 8305
  • [42] Type III secretion-mediated killing of endothelial cells by Pseudomonas aeruginosa
    Saliba, AM
    Filloux, A
    Ball, G
    Silva, ASV
    Assis, MC
    Plotkowski, MC
    MICROBIAL PATHOGENESIS, 2002, 33 (04) : 153 - 166
  • [43] Autophagy induced by type III secretion system toxins enhances clearance of Pseudomonas aeruginosa from human corneal epithelial cells
    Mohankumar, Vidyarani
    Ramalingam, Sangeetha
    Chidambaranathan, Gowri Priya
    Prajna, Lalitha
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2018, 503 (03) : 1510 - 1515
  • [45] PSEUDOMONAS-AERUGINOSA INVASION OF AND MULTIPLICATION WITHIN CORNEAL EPITHELIAL-CELLS IN-VITRO
    FLEISZIG, SMJ
    ZAIDI, TS
    PIER, GB
    INFECTION AND IMMUNITY, 1995, 63 (10) : 4072 - 4077
  • [46] Pseudomonas aeruginosa injects NDK into host cells through a type III secretion system
    Neeld, Dennis
    Jin, Yongxin
    Bichsel, Candace
    Jia, Jinghua
    Guo, Jianhui
    Bai, Fang
    Wu, Weihui
    Ha, Un-Hwan
    Terada, Naohiro
    Jin, Shouguang
    MICROBIOLOGY-SGM, 2014, 160 : 1417 - 1426
  • [47] Negative Regulation Of Autophagy By Pseudomonas AerugINOSa Type 3 Secretion System In Airway Epithelial Cells
    De La Rosa, I.
    Eissa, N. T.
    Xu, Y.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2013, 187
  • [48] The Type VI secretion system regulates Pseudomonas aeruginosa internalization in human corneal epithelial cells
    Ulhaq, Owais
    Robertson, Danielle M.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2017, 58 (08)
  • [49] Induction of Type I Interferon Signaling by Pseudomonas aeruginosa Is Diminished in Cystic Fibrosis Epithelial Cells
    Parker, Dane
    Cohen, Taylor S.
    Alhede, Morten
    Harfenist, Bryan S.
    Martin, Francis J.
    Prince, Alice
    AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 2012, 46 (01) : 6 - 13
  • [50] Role of the type III secreted exoenzymes S, T, and Y in systemic spread of pseudomonas aeruginosa PAO1 in vivo
    Vance, RE
    Rietsch, A
    Mekalanos, JJ
    INFECTION AND IMMUNITY, 2005, 73 (03) : 1706 - 1713