Electrostatic Doping-Induced Phonon Shift of Metallic Single-Wall Carbon Nanotubes

被引:9
|
作者
Zhang, Li [1 ]
Huang, Limin [2 ]
O'Brien, Stephen P. [2 ]
Yu, Zhonghua [1 ]
机构
[1] CUNY City Coll, Dept Chem, New York, NY 10031 USA
[2] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2008年 / 112卷 / 51期
基金
美国国家科学基金会;
关键词
D O I
10.1021/jp809002c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Confocal Raman microscopy is used to record the Raman spectra of a metallic single-wall carbon nanotube (SWNT) exposed to ambient air under electrostatic gating. Significant and irreversible changes in the carbon-carbon stretching modes (G band) Raman spectrum of the tube are observed. The gate dependent frequency shift and line broadening of the G band spectrum exhibit a much larger magnitude as well as a hysteresis behavior compared to the previous similar Raman scattering studies of individual nanotubes placed in vacuum. G band Raman spectra similar to those of typical semiconducting tubes are resolved when the metallic tube is highly doped, allowing for the observation of gradual evolution of the G band spectrum from a semiconducting type to the typical broad Fano type. Such observation reveals evidence of phonon interaction between the G band modes having same frequency. Raman spectroscopy is promising as a noninvasive tool to probe charge transfer doping in carbon nanotubes.
引用
收藏
页码:20118 / 20122
页数:5
相关论文
共 50 条
  • [41] Fluorinated single-wall carbon nanotubes
    Kudin, KN
    Bettinger, HF
    Scuseria, GE
    PHYSICAL REVIEW B, 2001, 63 (04)
  • [42] Excitons in single-wall carbon nanotubes
    Bulashevich, K. A.
    Suris, R. A.
    Rotkin, S. V.
    International Journal of Nanoscience, Vol 2, No 6, 2003, 2 (06): : 521 - 526
  • [43] Purification of single-wall carbon nanotubes
    Shi, ZJ
    Lian, YF
    Liao, FH
    Zhou, XH
    Gu, ZN
    Zhang, YG
    Iijima, S
    SOLID STATE COMMUNICATIONS, 1999, 112 (01) : 35 - 37
  • [44] Fluorination of single-wall carbon nanotubes
    Mickelson, ET
    Huffman, CB
    Rinzler, AG
    Smalley, RE
    Hauge, RH
    Margrave, JL
    CHEMICAL PHYSICS LETTERS, 1998, 296 (1-2) : 188 - 194
  • [45] Ultralong single-wall carbon nanotubes
    L. X. Zheng
    M. J. O'Connell
    S. K. Doorn
    X. Z. Liao
    Y. H. Zhao
    E. A. Akhadov
    M. A. Hoffbauer
    B. J. Roop
    Q. X. Jia
    R. C. Dye
    D. E. Peterson
    S. M. Huang
    J. Liu
    Y. T. Zhu
    Nature Materials, 2004, 3 : 673 - 676
  • [46] Filling single-wall carbon nanotubes
    Monthioux, M
    CARBON, 2002, 40 (10) : 1809 - 1823
  • [47] Properties of single-wall carbon nanotubes
    Yu, HY
    Jhang, SH
    Park, YW
    Bittar, A
    Trodahl, HJ
    Kaiser, AB
    SYNTHETIC METALS, 2001, 121 (1-3) : 1223 - 1224
  • [48] Electroconductance in single-wall carbon nanotubes
    Jaiswal, Manu
    Sangeeth, C. S. Suchand
    Menon, Reghu
    APPLIED PHYSICS LETTERS, 2009, 95 (03)
  • [49] Phonon modes in single-wall nanotubes with a small diameter
    Maeda, T
    Horie, C
    PHYSICA B, 1999, 263 : 479 - 481
  • [50] Nonlinear conductance reveals positions of carbon atoms in metallic single-wall carbon nanotubes
    P. Partovi-Azar
    A. Namiranian
    The European Physical Journal B, 2009, 72 : 89 - 95