共 50 条
GRAPHICAL METHODS FOR TANNAKA DUALITY OF WEAK BIALGEBRAS AND WEAK HOPF ALGEBRAS
被引:0
|作者:
McCurdy, Micah Blake
[1
]
机构:
[1] St Marys Univ, Halifax, NS B3H 3C3, Canada
来源:
关键词:
Tannaka duality;
Tannaka reconstruction;
bialgebras;
Hopf algebras;
weak bialgebras;
weak Hopf algebras;
separable Frobenius monoidal functors;
graphical methods;
RECONSTRUCTION;
D O I:
暂无
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Tannaka Duality describes the relationship between algebraic objects in a given category and their representations; an important case is that of Hopf algebras and their categories of representations; these have strong monoidal forgetful "fibre functors" to the category of vector spaces. We simultaneously generalize the theory of Tannaka duality in two ways: first, we replace Hopf algebras with weak Hopf algebras and strong monoidal functors with separable Frobenius monoidal functors; second, we replace the category of vector spaces with an arbitrary braided monoidal category. To accomplish this goal, we introduce a new graphical notation for functors between monoidal categories, using string diagrams with coloured regions. Not only does this notation extend our capacity to give simple proofs of complicated calculations, it makes plain some of the connections between Frobenius monoidal or separable Frobenius monoidal functors and the topology of the axioms defining certain algebraic structures. Finally, having generalized Tannaka to an arbitrary base category, we briefly discuss the functoriality of the construction as this base is varied.
引用
收藏
页码:233 / 280
页数:48
相关论文