Boundedness in a chemotaxis system with nonlinear signal production

被引:79
|
作者
Liu Dong-mei [1 ]
Tao You-shan [2 ]
机构
[1] Donghua Univ, Coll Informat Sci & Technol, Shanghai 201620, Peoples R China
[2] Donghua Univ, Dept Appl Math, Shanghai 200051, Peoples R China
基金
中国国家自然科学基金;
关键词
Keller-Segel model; nonlinear signal production; prevention of blow-up; KELLER-SEGEL SYSTEM; BLOW-UP; MODELING CHEMOTAXIS; PATTERN-FORMATION;
D O I
10.1007/s11766-016-3386-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work deals with the zero-Neumann boundary problem to a fully parabolic chemotaxis system with a nonlinear signal production function f(s) fulfilling 0 <= f(s) <= Ks(alpha) for all s >= 0, where K and alpha are positive parameters. It is shown that whenever 0 < alpha < 2/n (where n denotes the spatial dimension) and under suitable assumptions on the initial data, this problem admits a unique global classical solution that is uniformly-in-time bounded in any spatial dimension. The proof is based on some a priori estimate techniques.
引用
收藏
页码:379 / 388
页数:10
相关论文
共 50 条