CONSTRUCTING NESTED NODAL SETS FOR MULTIVARIATE POLYNOMIAL INTERPOLATION

被引:12
|
作者
Narayan, Akil [1 ]
Xiu, Dongbin [2 ,3 ]
机构
[1] Univ Massachusetts Dartmouth, Dept Math, N Dartmouth, MA 02747 USA
[2] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[3] Univ Utah, Sci Comp & Imaging SCI Inst, Salt Lake City, UT 84112 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2013年 / 35卷 / 05期
关键词
multivariate interpolation; Lebesgue constant; greedy optimization; EXTREMAL PROBLEM; POINTS; ZEROS;
D O I
10.1137/12089613X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a robust method for choosing multivariate polynomial interpolation nodes. Our algorithm is an optimization method to greedily minimize a measure of interpolant sensitivity, a variant of a weighted Lebesgue function. Nodes are therefore chosen that tend to control oscillations in the resulting interpolant. This method can produce an arbitrary number of nodes and is not constrained by the dimension of a complete polynomial space. Our method is therefore flexible: nested nodal sets are produced in spaces of arbitrary dimensions, and the number of nodes added at each stage can be arbitrary. The algorithm produces a nodal set given a probability measure on the input space, thus parameterizing interpolants with respect to finite measures. We present examples to show that the method yields nodal sets that behave well with respect to standard interpolation diagnostics: the Lebesgue constant, the Vandermonde determinant, and the Vandermonde condition number. We also show that a nongreedy version of the nodal array has a strong connection with equilibrium measures from weighted pluripotential theory.
引用
收藏
页码:A2293 / A2315
页数:23
相关论文
共 50 条
  • [41] Multivariate polynomial interpolation on Lissajous-Chebyshev nodes
    Dencker, Peter
    Erb, Wolfgang
    JOURNAL OF APPROXIMATION THEORY, 2017, 219 : 15 - 45
  • [42] Improved error bound for multivariate Chebyshev polynomial interpolation
    Glau, Kathrin
    Mahlstedt, Mirco
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (11) : 2302 - 2314
  • [43] Unisolvency for multivariate polynomial interpolation in Coatmelec configurations of nodes
    Angel Garcia-March, Miguel
    Gimenez, Fernando
    Villatoro, Francisco R.
    Perez, Jezabel
    Fernandez de Cordoba, Pedro
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (18) : 7427 - 7431
  • [44] Approximating optimal point configurations for multivariate polynomial interpolation
    Van Barel, Marc
    Humet, Matthias
    Sorber, Laurent
    1600, Kent State University (42): : 41 - 63
  • [45] DIMENSIONAL REDUCTION FOR MULTIVARIATE LAGRANGE POLYNOMIAL INTERPOLATION PROBLEMS
    Errachid M.
    Essanhaji A.
    Messaoudi A.A.
    Electronic Transactions on Numerical Analysis, 2024, 60 : 123 - 135
  • [46] Computational aspects of multivariate polynomial interpolation: Indexing the coefficients
    de Boor, C
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2000, 12 (04) : 289 - 301
  • [47] Evaluation and interpolation over multivariate skew polynomial rings
    Martinez-Penas, Umberto
    Kschischang, Frank R.
    JOURNAL OF ALGEBRA, 2019, 525 : 111 - 139
  • [48] Lagrange Multivariate Polynomial Interpolation: A Random Algorithmic Approach
    Essanhaji, A.
    Errachid, M.
    JOURNAL OF APPLIED MATHEMATICS, 2022, 2022
  • [49] Multivariate polynomial interpolation using even and odd polynomials
    J. M. Carnicer
    C. Godés
    BIT Numerical Mathematics, 2018, 58 : 27 - 49
  • [50] A local multivariate Lagrange interpolation method for constructing shape functions
    Luo, Yunhua
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2010, 26 (02) : 252 - 261