Exploiting Hessian matrix and trust-region algorithm in hyperparameters estimation of Gaussian process

被引:36
|
作者
Zhang, YN [1 ]
Leithead, WE
机构
[1] Natl Univ Ireland, Hamilton Inst, Maynooth, Kildare, Ireland
[2] Univ Strathclyde, Dept Elect & Elect Engn, Glasgow G1 1QE, Lanark, Scotland
关键词
Gaussian process; log likelihood maximization; conjugate gradient; trust region; Hessian matrix;
D O I
10.1016/j.amc.2005.01.113
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Gaussian process (GP) regression is a Bayesian non-parametric regression model, showing good performance in various applications. However, it is quite rare to see research results on log-likelihood maximization algorithms. Instead of the commonly used conjugate gradient method, the Hessian matrix is first derived/simplified in this paper and the trust-region optimization method is then presented to estimate GP hyper-parameters. Numerical experiments verify the theoretical analysis, showing the advantages of using Hessian matrix and trust-region algorithms. In the GP context, the trust-region optimization method is a robust alternative to conjugate gradient method, also in view of future researches on approximate and/or parallel GP-implementation. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:1264 / 1281
页数:18
相关论文
共 50 条
  • [41] Trust-Region Solver of a Nonlinear Magnetometer Disturbance Estimation Problem
    Wu, Jin
    Li, Chong
    Zhang, Chengxi
    Jiang, Yi
    Huang, Yulong
    Wang, Lujia
    Liu, Ming
    [J]. IEEE SENSORS JOURNAL, 2021, 21 (20) : 22569 - 22577
  • [42] TRAINING MULTILAYERED NEURAL NETWORK WITH A TRUST-REGION BASED ALGORITHM
    DINH, TP
    WANG, S
    YASSINE, A
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1990, 24 (04): : 523 - 553
  • [43] Trust-region and affine scaling algorithm for linearly constrained optimization
    Chen, Zhongwen
    Zhang, Xiangsun
    [J]. Science in China, Series A: Mathematics, Physics, Astronomy, 2002, 45 (11):
  • [44] A stochastic nonmonotone trust-region training algorithm for image classification
    Yousefi, Mahsa
    Calomardo, Angeles Martinez
    [J]. 2022 16TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS, SITIS, 2022, : 522 - 529
  • [45] SUBSPACE TRUST-REGION ALGORITHM WITH CONIC MODEL FOR UNCONSTRAINED OPTIMIZATION
    Zhang, Xin
    Wen, Jie
    Ni, Qin
    [J]. NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2013, 3 (02): : 223 - 234
  • [46] Experience with Approximations in the Trust-Region Parallel Direct Search Algorithm
    Shontz, S. M.
    Howle, V. E.
    Hough, P. D.
    [J]. COMPUTATIONAL SCIENCE - ICCS 2009, PART I, 2009, 5544 : 501 - +
  • [47] A trust-region and affine scaling algorithm for linearly constrained optimization
    Chen Zhongwen
    Zhang Xiangsun
    [J]. Science in China Series A: Mathematics, 2002, 45 (11): : 1390 - 1397
  • [48] Nonsmooth Bundle Trust-region Algorithm with Applications to Robust Stability
    Apkarian, Pierre
    Noll, Dominikus
    Ravanbod, Laleh
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2016, 24 (01) : 115 - 148
  • [49] Trust-Region Algorithm for the Inversion of Molecular Diffusion NMR Data
    Xu, Kaipin
    Zhang, Shanmin
    [J]. ANALYTICAL CHEMISTRY, 2014, 86 (01) : 592 - 599
  • [50] A TRUST-REGION ALGORITHM FOR SOLVING MINI-MAX PROBLEM
    El-Sobky, Bothina
    Abotahoun, Abdallah
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2018, 36 (06) : 776 - 791