Fast Hyperspectral Image Denoising and Inpainting Based on Low-Rank and Sparse Representations

被引:258
|
作者
Zhuang, Lina [1 ]
Bioucas-Dias, Jose M. [1 ]
机构
[1] Univ Lisbon, Inst Super Tecn, Inst Telecomunicacoes, P-1049001 Lisbon, Portugal
关键词
BM3D; BM4D; high; dimensional data; low-dimensional subspace; low-rank regularized collaborative filtering; nonlocal patch (cube); self-similarity; TOTAL VARIATION MODEL; COMPONENT ANALYSIS; CLASSIFICATION; RECONSTRUCTION; ALGORITHM; RECOVERY;
D O I
10.1109/JSTARS.2018.2796570
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper introduces two very fast and competitive hyperspectral image (HSI) restoration algorithms: fast hyperspectral denoising (FastHyDe), a denoising algorithm able to cope with Gaussian and Poissonian noise, and fast hyperspectral inpainting (FastHyIn), an inpainting algorithm to restore HSIs where some observations from known pixels in some known bands are missing. FastHyDe and FastHyIn fully exploit extremely compact and sparse HSI representations linked with their low-rank and self-similarity characteristics. In a series of experiments with simulated and real data, the newly introduced FastHyDe and FastHyIn compete with the state-of-the-art methods, with much lower computational complexity.
引用
收藏
页码:730 / 742
页数:13
相关论文
共 50 条
  • [21] Hyperspectral Image Denoising Based on Nonlocal Low-Rank and TV Regularization
    Kong, Xiangyang
    Zhao, Yongqiang
    Xue, Jize
    Chan, Jonathan Cheung-Wai
    Ren, Zhigang
    Huang, HaiXia
    Zang, Jiyuan
    REMOTE SENSING, 2020, 12 (12)
  • [22] Image inpainting based on low-rank and joint-sparse matrix recovery
    Chen, Dai-Qiang
    Cheng, Li-Zhi
    ELECTRONICS LETTERS, 2013, 49 (01) : 35 - 36
  • [23] HYPERSPECTRAL IMAGE SUPER-RESOLUTION VIA LOCAL LOW-RANK AND SPARSE REPRESENTATIONS
    Dian, Renwei
    Li, Shutao
    Fang, Leyuan
    Bioucas-Dias, Jose
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4003 - 4006
  • [24] Hyperspectral image denoising and destriping based on sparse representation, graph Laplacian regularization and stripe low-rank property
    Zhang, Zhi
    Yang, Fang
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2022, 2022 (01)
  • [25] Hyperspectral image denoising and destriping based on sparse representation, graph Laplacian regularization and stripe low-rank property
    Zhi Zhang
    Fang Yang
    EURASIP Journal on Advances in Signal Processing, 2022
  • [26] Denoising of Hyperspectral Image Using Low-Rank Matrix Factorization
    Xu, Fei
    Chen, Yongyong
    Peng, Chong
    Wang, Yongli
    Liu, Xuefeng
    He, Guoping
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (07) : 1141 - 1145
  • [27] Hyperspectral image denoising with superpixel segmentation and low-rank representation
    Fan, Fan
    Ma, Yong
    Li, Chang
    Mei, Xiaoguang
    Huang, Jun
    Ma, Jiayi
    INFORMATION SCIENCES, 2017, 397 : 48 - 68
  • [28] HYPERSPECTRAL IMAGE DENOISING WITH MULTISCALE LOW-RANK MATRIX RECOVERY
    Huang, Zhihong
    Li, Shutao
    Hu, Fang
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 5442 - 5445
  • [29] Hyperspectral image denoising via low-rank matrix recovery
    Song, Huihui
    Wang, Guojie
    Zhang, Kaihua
    REMOTE SENSING LETTERS, 2014, 5 (10) : 872 - 881
  • [30] Low-rank Bayesian tensor factorization for hyperspectral image denoising
    Wei, Kaixuan
    Fu, Ying
    NEUROCOMPUTING, 2019, 331 (412-423) : 412 - 423