Magnetic Resonance RF Pulse Design by Optimal Control With Physical Constraints

被引:20
|
作者
Rund, Armin [1 ,2 ]
Aigner, Christoph Stefan [2 ,3 ]
Kunisch, Karl [1 ,4 ]
Stollberger, Rudolf [2 ,3 ]
机构
[1] Karl Franzens Univ Graz, Inst Math & Sci Comp, A-8010 Graz, Austria
[2] BioTechMed Graz, A-8010 Graz, Austria
[3] Graz Univ Technol, Inst Med Engn, A-8010 Graz, Austria
[4] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
RF pulse design; slice-selective; optimal control; physical constraints; inequality constraints; SIMULTANEOUS MULTISLICE EXCITATION; RATE SELECTIVE EXCITATION; ACTIVE SET STRATEGY;
D O I
10.1109/TMI.2017.2758391
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Optimal control approaches have proved useful in designing RF pulses for large tip-angle applications. A typical challenge for optimal control design is the inclusion of constraints resulting from physiological or technical limitations that assure the realizability of the optimized pulses. In this paper, we show how to treat such inequality constraints, in particular, amplitude constraints on the B1 field, the slice-selective gradient, and its slew rate, as well as constraints on the slice profile accuracy. For the latter, a pointwise profile error and additional phase constraints are prescribed. Here, a penalization method is introduced that corresponds to a higher order tracking instead of the common quadratic tracking. The order is driven to infinity in the course of the optimization. We jointly optimize for the RF and slice-selective gradient waveform. The amplitude constraints on these control variables are treated efficiently by semismooth Newton or quasi-Newton methods. The method is flexible, adapting to many optimization goals. As an application, we reduce the power of refocusing pulses, which is important for spin echo-based applications with a short echo spacing. Here, the optimization method is tested in numerical experiments for reducing the pulse power of simultaneous multislice refocusing pulses. The results are validated by phantom and in-vivo experiments.
引用
收藏
页码:461 / 472
页数:12
相关论文
共 50 条
  • [1] A smoothing monotonic convergent optimal control algorithm for nuclear magnetic resonance pulse sequence design
    Maximov, Ivan I.
    Salomon, Julien
    Turinici, Gabriel
    Nielsen, Niels Chr.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (08):
  • [2] Optimal design of RF pulses with arbitrary profiles in Magnetic Resonance Imaging
    Khalifa, AM
    Youssef, ABM
    Kadah, YM
    [J]. PROCEEDINGS OF THE 23RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-4: BUILDING NEW BRIDGES AT THE FRONTIERS OF ENGINEERING AND MEDICINE, 2001, 23 : 2296 - 2299
  • [3] The gVERSE RF Pulse: An Optimal Approach to MRI Pulse Design
    Anand, Christopher K.
    Stoyan, Stephen J.
    Terlaky, Tamas
    [J]. MODELING, SIMULATION AND OPTIMIZATION OF COMPLEX PROCESSES, 2008, : 25 - +
  • [4] Iterative RF pulse refinement for magnetic resonance imaging
    Lebsack, ET
    Wright, SM
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2002, 49 (01) : 41 - 48
  • [5] Time optimal control-based RF pulse design under gradient imperfections
    Aigner, Christoph S.
    Rund, Armin
    Seada, Samy Abo
    Price, Anthony N.
    Hajnal, Joseph, V
    Malik, Shaihan J.
    Kunisch, Karl
    Stollberger, Rudolf
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2020, 83 (02) : 561 - 574
  • [6] Parallel transmission RF pulse design with strict temperature constraints
    Deniz, Cem M.
    Carluccio, Giuseppe
    Collins, Christopher
    [J]. NMR IN BIOMEDICINE, 2017, 30 (05)
  • [7] Magnetic resonance tissue quantification using optimal bSSFP pulse-sequence design
    Christopher Kumar Anand
    Renata Sotirov
    Tamás Terlaky
    Zhuo Zheng
    [J]. Optimization and Engineering, 2007, 8 : 215 - 238
  • [8] Magnetic resonance tissue quantification using optimal bSSFP pulse-sequence design
    Anand, Christopher Kumar
    Sotirov, Renata
    Terlaky, Tamas
    Zheng, Zhuo
    [J]. OPTIMIZATION AND ENGINEERING, 2007, 8 (02) : 215 - 238
  • [9] A novel selective-excitation RF pulse for magnetic resonance imaging
    Liu Ying
    Li Jianqi
    Li Gengying
    [J]. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2008, 21 (03) : 199 - 205
  • [10] A novel selective-excitation RF pulse for magnetic resonance imaging
    Liu Ying
    Li Jianqi
    Li Gengying
    [J]. Magnetic Resonance Materials in Physics, Biology and Medicine, 2008, 21 : 199 - 205